系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (12): 3470-3477.doi: 10.12305/j.issn.1001-506X.2021.12.07
马小梦, 何岷*, 毕建权
收稿日期:
2021-01-18
出版日期:
2021-11-24
发布日期:
2021-11-30
通讯作者:
何岷
作者简介:
马小梦(1994—), 男, 硕士研究生, 主要研究方向为相控阵天线阵列、天线罩校准|何岷(1981—), 男, 研究员, 博士, 主要研究方向为雷达导引头总体设计、新体制相控阵雷达技术、雷达成像技术|毕建权(1983—), 男, 高级工程师, 本科, 主要研究方向为雷达导引头总体设计、微波暗室设计校准技术
Xiaomeng MA, Min HE*, Jianquan BI
Received:
2021-01-18
Online:
2021-11-24
Published:
2021-11-30
Contact:
Min HE
摘要:
导引头天线罩的流线型结构对天线阵列造成了能量损失、角度检测误差等电磁性能方面的影响, 给制导性能带来严重损失。本文利用电磁波折射理论建立了波束指向偏移模型, 通过数学公式推导验证了该模型的合理性, 为角度检测误差补偿提供了理论基础。波束偏移理论和相控阵天线阵列测角原理的结合定位了阵列在有天线罩时检测角所对应的最大波束指向角度, 提升了相对于无天线罩时检测角误差的准确性。实验数据表明,所提方法所得到的误差角度补偿表将阵列角度检测误差从1°降低到可接受的0.1°以下的误差范围, 验证了该方法的创新性和先进性。
中图分类号:
马小梦, 何岷, 毕建权. 波束折射模型在天线罩补偿中的应用[J]. 系统工程与电子技术, 2021, 43(12): 3470-3477.
Xiaomeng MA, Min HE, Jianquan BI. Application of beam refraction model in radome compensation[J]. Systems Engineering and Electronics, 2021, 43(12): 3470-3477.
1 |
LI P , XU W Y , YANG D W . An inversion design method for the radome thickness based on interval arithmetic[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (4): 658- 661.
doi: 10.1109/LAWP.2018.2810281 |
2 |
XU W Y , ZHANG J , LI P , et al. Amplitude-phase-based interval analysis method for radomes with thickness errors and its robust-design application[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (7): 1103- 1107.
doi: 10.1109/LAWP.2020.2989818 |
3 |
LI P , PEDRYCZ W , XU W Y , et al. Far-field pattern tolerance analysis of the antenna-radome system with the material thickness error: an interval arithmetic approach[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (4): 1934- 1946.
doi: 10.1109/TAP.2017.2670319 |
4 |
XU W , DUAN B Y , LI P , et al. A new efficient thickness profile design method for streamlined airborne radomes[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (11): 6190- 6195.
doi: 10.1109/TAP.2017.2754460 |
5 |
XU W Y , DUAN B Y , LI P , et al. Study on the electromagnetic performance of inhomogeneous radomes for airborne applications-part Ⅱ: the overall comparison with variable thickness radomes[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (6): 3175- 3183.
doi: 10.1109/TAP.2017.2694463 |
6 |
NAIR R U , SHASHIDHARA S , JHA R M . Novel inhomogeneous planar layer radome design for airborne applications[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 854- 856.
doi: 10.1109/LAWP.2012.2210531 |
7 |
QAMAR Z , ABOSERWAL N , SALAZAR-CERRENO J L . An accurate method for designing, characterizing, and testing a multi-layer radome for mm-wave applications[J]. IEEE Access, 2020, 8, 23041- 23053.
doi: 10.1109/ACCESS.2020.2970544 |
8 |
GHIASVAND F , HEIDAR H , KAZEROONI M , et al. Optimal design and implementation of inhomogeneous planar radome by perforating the host material[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (5): 3751- 3759.
doi: 10.1109/TAP.2020.2970020 |
9 | COR I, SAKA B. Analysis and optimization of wideband radomes[C]//Proc. of the Signal Processing & Communications Applications Conference, 2018. |
10 | GARCIA E, SOMOLINOS A, CATEDRA F. Analyzing multilayer radomes with arbitrary shape using a technique based on characteristic basis function method[C]//Proc. of the International Conference on Electromagnetics in Advanced Applications, 2019. |
11 |
XU W , DUAN B Y , LI P , et al. Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (11): 5880- 5885.
doi: 10.1109/TAP.2014.2352361 |
12 |
LIU L , NIE Z P . Performance improvement of antenna array-radome system based on efficient compensation and optimization scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (5): 866- 870.
doi: 10.1109/LAWP.2019.2903846 |
13 |
PERSSON K , GUSTAFSSON M , KRISTENSSON G , et al. Radome diagnostics-source reconstruction of phase objects with an equivalent currents approach[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (4): 2041- 2051.
doi: 10.1109/TAP.2014.2298534 |
14 | 王威, 王丽. 天线罩系统结构一体化优化算法[J]. 计算机仿真, 2019, 36 (1): 220- 224. |
WANG W , WANG L . Integrated optimization algorithm of radome system structure[J]. Computer Simulation, 2019, 36 (1): 220- 224. | |
15 |
KIM J H , CHUN H J , HONG I P , et al. Analysis of FSS radomes based on physical optics method and ray tracing technique[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 868- 871.
doi: 10.1109/LAWP.2014.2320978 |
16 |
LI P , XU W Y , SONG L W . A novel compensation strategy for the radiation characteristics of large dielectric radomes based on phase modification[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1044- 1047.
doi: 10.1109/LAWP.2015.2491298 |
17 | MOCCIA M , CASTALDI G , ALTERIO D G , et al. Transformation-optics-based design of a metamaterial radome for extending the scanning angle of a phased array antenna[J]. IEEE Journal on Multiscale & Multiphysics Computational Techniques, 2017, 2, 159- 167. |
18 | WANG C S , WANG Y K , CHEN Y K , et al. Coupling model and electronic compensation of antenna-radome system for hypersonic vehicle with effect of high-temperature ablation[J]. IEEE Trans.on Antennas and Propagation, 2019, 68 (3): 159- 167. |
19 |
KANTH V K , RAGHAVAN S . EM design and analysis of frequency selective surface based on substrate-integrated waveguide technology for airborne radome application[J]. IEEE Trans.on Microwave Theory and Techniques, 2019, 67 (5): 1727- 1739.
doi: 10.1109/TMTT.2019.2905196 |
20 | LIU N , SHENG X J , ZHANG C B , et al. Design and synthesis of band-pass frequency selective surface with wideband rejection and fast roll-off characteristics for radome applications[J]. IEEE Trans.on Antennas and Propagation, 2019, 68 (4): 2975- 2983. |
21 |
BIANCHI D , GENOVESI S , BORGESE M , et al. Element-independent design of wide-angle impedance matching radomes by using the generalized scattering matrix approach[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (9): 4708- 4718.
doi: 10.1109/TAP.2018.2845449 |
22 |
LIU N , SHENG X J , ZHANG C B , et al. Design of dual-band composite radome wall with high angular stability using frequency selective surface[J]. IEEE Access, 2019, 7, 123393- 123401.
doi: 10.1109/ACCESS.2019.2937977 |
23 |
YUAN J , KONG X K , CHEN K , et al. Intelligent radome design with multilayer composites to realize asymmetric transmission of electromagnetic waves and energy isolation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (9): 1511- 1515.
doi: 10.1109/LAWP.2020.3008008 |
24 |
PERSSON K , GUSTAFSSON M , KRISTENSSON G , et al. Radome diagnostics-source reconstruction of phase objects with an equivalent currents approach[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (4): 2041- 2051.
doi: 10.1109/TAP.2014.2298534 |
25 | HEGDE M G, SHAMBULINGAPPA V, MAHIMA P, et al. EM design of active metamaterial based airborne radome for electronic warfare applications[C]//Proc. of the IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, 2017. |
26 |
WANG B B , HE M , LIU J B , et al. An efficient integral equation/modified surface integration method for analysis of antenna-radome structures in receiving mode[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (9): 4884- 4889.
doi: 10.1109/TAP.2014.2334707 |
27 |
LU C C . A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes[J]. IEEE Trans.on Antennas and Propagation, 2003, 51 (3): 606- 612.
doi: 10.1109/TAP.2003.809823 |
28 |
WANG B B , HE M , LIU J B , et al. Fast and efficient analysis of radome-enclosed antennas in receiving mode by an iterative-based hybrid integral equation/modified surface integration method[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (5): 2436- 2445.
doi: 10.1109/TAP.2017.2676718 |
29 | PRIYANKA B M, PHALGUNI M, HEMA S R U N. EM analysis of planar phased array-radome system for ground-based FCR applications[C]//Proc. of the IEEE Indian Conference on Antennas and Propogation, 2018. |
30 | 李洋, 张强, 何丙发, 等. 相控阵系统中天线罩高效测试技术的研究[C]//2016年全国军事微波, 太赫兹, 电磁兼容技术学术会议, 2016: 156-158. |
LI Y, ZHANG Q, HE B F, et al. Research on efficient test technology of radome in phased array system[C]//Proc. of the National Conference on Military Microwave, Terahertz and Electromagnetic Compatibility Technology, 2016: 156-158. | |
31 | 宗睿. 导引头天线罩误差及相控阵导引头波束指向误差在线补偿方法研究[D]. 北京: 北京理工大学, 2016. |
ZONG R. Research on on-line compensation method for radome error of seeker and beam pointing error of phased array seeker[D]. Beijing: Beijing Institute of Technology, 2016. | |
32 |
LIN S Y , LIN D F , WANG W . A novel online estimation and compensation method for strapdown phased array seeker disturbance rejection effect using extended state Kalman filter[J]. IEEE Access, 2019, 7, 172330- 172340.
doi: 10.1109/ACCESS.2019.2956256 |
[1] | 刘涓, 苏全永, 施政, 薛显谋. 相控阵天线微流道液冷优化设计及性能研究[J]. 系统工程与电子技术, 2022, 44(6): 1782-1788. |
[2] | 王占领, 庞晨, 殷加鹏, 李永祯, 王雪松. 基于极化状态配置的宽带相控阵极化控制方法[J]. 系统工程与电子技术, 2022, 44(3): 795-801. |
[3] | 邢文革, 周传睿, 周程. 相控阵雷达探通一体化关键技术研究[J]. 系统工程与电子技术, 2022, 44(10): 3053-3058. |
[4] | 蒋伟, 盛文, 祁炜, 刘诗华. 大型相控阵雷达T/R组件维修决策问题综述[J]. 系统工程与电子技术, 2022, 44(1): 127-138. |
[5] | 陈子昂, 杨嘉伟, 陶琛琛. GSC结构相控阵在主瓣干扰下的自适应单脉冲方法[J]. 系统工程与电子技术, 2021, 43(8): 2137-2145. |
[6] | 刘傲, 周正, 李双明. 基于优化序列提取的相控阵雷达识别方法[J]. 系统工程与电子技术, 2021, 43(3): 656-665. |
[7] | 李纪三, 蔡文彬, 耿利祥, 刘溶, 任渊. 旋转相控阵雷达变数据率目标跟踪算法[J]. 系统工程与电子技术, 2021, 43(3): 676-683. |
[8] | 陈威, 张吉建, 谢文冲, 王永良. 机载相控阵雷达灵巧干扰信号模型及抑制方法研究0[J]. 系统工程与电子技术, 2021, 43(2): 343-350. |
[9] | 廖志忠, 王琪. 雷达导引头指向误差对导弹制导的影响与对策[J]. 系统工程与电子技术, 2021, 43(2): 519-525. |
[10] | 王迪, 王雪梅, 何岷, 张金昌, 王兴龙, 宿常鹏. 弹载相控阵天线“最小二乘法——伪Hadamard矩阵”联合校准[J]. 系统工程与电子技术, 2020, 42(2): 271-276. |
[11] | 张璘, 姜义成. 基于速度合成孔径雷达的海面舰船动目标成像方法[J]. 系统工程与电子技术, 2020, 42(1): 45-51. |
[12] | 夏亮, 杨江平, 常春贺, 王安安. 大型相控阵雷达软件系统安全性研究[J]. 系统工程与电子技术, 2019, 41(8): 1755-1762. |
[13] | 霍立寰, 廖桂生, 杨志伟, 黄鹏辉. 基于图信号处理的大口径阵面测量数据恢复[J]. 系统工程与电子技术, 2019, 41(6): 1230-1235. |
[14] | 向巍, 葛志强, 崔剑, 向洪. 多通道相控阵自适应数字单脉冲合成方法[J]. 系统工程与电子技术, 2019, 41(4): 765-771. |
[15] | 程天昊, 王布宏, 蔡斌, 李夏, 刘帅琦. 二维混合MIMO相控阵雷达的嵌套阵列结构设计[J]. 系统工程与电子技术, 2019, 41(3): 541-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||