1 |
唐小佩, 杨小冈, 刘云峰, 等. 基于深度卷积神经网络的飞机识别研究[J]. 电光与控制, 2018, 25 (5): 72- 76.
|
|
TANG X P , YANG X G , LIU Y F , et al. Research on aircraft recognition based on deep convolutional neural network[J]. Electronics Optics and Control, 2018, 25 (5): 72- 76.
|
2 |
MIAO W X, LUO Z. Aircraft detection based on multiple scale faster-RCNN[C]//Proc. of the International Conference on Virtual Reality and Visualization, 2018: 90-93.
|
3 |
ZHANG M C , WU X , WANG P . Aircraft recognition via extraction of closed contour and partial feature matching[J]. Computer Simulation, 2006,
doi: 10.1016/S1005-8885(07)60042-9
|
4 |
刘莉, 吴秀清, 牛宗标, 等. 模糊图像中的飞机识别方法[J]. 计算机仿真, 2006, 23 (3): 164- 166.
|
|
LIU L , WU X Q , NIU Z B , et al. Aircraft recognition method in fuzzy image[J]. Computer simulation, 2006, 23 (3): 164- 166.
|
5 |
QIU J B , LI S J , WANG W . A new approach to detect aircrafts in remote sensing images based on corner and edge information fusion[J]. Microelectronics & Computer, 2011, 28 (9): 214- 216.
|
6 |
ZHANG Y X , JIAN H U , ZHANG Z , et al. Research on aircraft recognition based on local detection and affine invariant feature[J]. Remote Sensing Information, 2013, 28 (3): 3- 102.
|
7 |
ZHANG F , LIU S Q , WANG D B , et al. Aircraft recognition in infrared image using wavelet moment invariants[J]. Image and Vision Computing, 2009, 27 (4): 313- 318.
doi: 10.1016/j.imavis.2008.08.007
|
8 |
CAI D . Study on aircraft recognition in high spatial resolution remote sensing image based on skeleton characteristics analysis[J]. Advanced Materials Research, 2011, 268-270, 1982- 1985.
doi: 10.4028/www.scientific.net/AMR.268-270.1982
|
9 |
LIU G , SUN X , FU K , et al. Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 10 (3): 573- 577.
|
10 |
GUO Z H , LI S H . One-dimensional frequency-domain features for aircraft recognition from radar range profiles[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (4): 1880- 1892.
doi: 10.1109/TAES.2010.5595601
|
11 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time target detection with region proposal networks[C]//Proc. of the Advances in Neural Information Processing Systems, 2015: 91-99.
|
12 |
TANG T Y , ZHOU S L , DENG Z P , et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17 (2): 336.
doi: 10.3390/s17020336
|
13 |
DENG Z P , SUN H , ZHOU S , et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (8): 3652- 3664.
doi: 10.1109/JSTARS.2017.2694890
|
14 |
孙嘉赤, 邹焕新, 邓志鹏, 等. 基于级联卷积神经网络的港口多方向舰船检测与分类[J]. 系统工程与电子技术, 2020, 42 (9): 1903- 1910.
|
|
SUN J C , ZOU H X , DENG Z P , et al. Oriented inshore ship detection and classification based on cascade RCNN[J]. Systems Engineering and Electronics, 2020, 42 (9): 1903- 1910.
|
15 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time target detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
16 |
DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented target detection in aerial images[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 2849-2858.
|
17 |
YU D H, ZHAO C, XU J F, et al. A method of aircraft detection using fully convolutional network[C]//Proc. of the International Conference on Computer Systems, Electronics and Control, 2017: 914-918.
|
18 |
WANG B, ZHOU Y, ZHANG H, et al. An aircraft target detection method based on regional convolutional neural network for remote sensing images[C]//Proc. of the IEEE 9th International Conference on Electronics Information and Emergency Communication, 2019: 474-478.
|
19 |
LI Y , FU K , SUN H , et al. An aircraft detection framework based on reinforcement learning and convolutional neural networks in remote sensing images[J]. Remote Sensing, 2018, 10 (2): 243.
doi: 10.3390/rs10020243
|
20 |
ZHANG Y H , SUN H , ZUO J , et al. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversarial networks[J]. Remote Sensing, 2018, 10 (7): 1123.
doi: 10.3390/rs10071123
|
21 |
YANG J C , ZHU Y , JIANG B , et al. Aircraft detection in remote sensing images based on a deep residual network and super-vector coding[J]. Remote Sensing Letters, 2018, 9 (3): 228- 236.
doi: 10.1080/2150704X.2017.1415474
|
22 |
LIN J X, LI X D, PAN H. Aircraft recognition in remote sensing images based on deep learning[C]//Proc. of the 33rd Youth Academic Annual Conference of Chinese Association of Automation, 2018: 895-899.
|
23 |
ZUO J W , XU G L , FU K , et al. Aircraft type recognition based on segmentation with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (2): 282- 286.
doi: 10.1109/LGRS.2017.2786232
|
24 |
俞汝劼, 杨贞, 熊惠霖. 基于深度卷积神经网络的航空器检测与识别[J]. 计算机应用, 2017, 37 (6): 1702- 1707.
|
|
YU R J , YANG Z , XIONG H L . Aircraft detection and recognition based on deep convolutional neural network[J]. Journal of Computer Applications, 2017, 37 (6): 1702- 1707.
|
25 |
CHEN K, PANG J, WANG J, et al. Hybrid task cascade for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4974-4983.
|
26 |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for target detection in aerial images[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
|
27 |
MA J Q , SHAO W , YE H , et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Trans.on Multimedia, 2018, 20 (11): 3111- 3122.
doi: 10.1109/TMM.2018.2818020
|
28 |
JIANG Y Y, ZHU X, WANG X, et al. R2CNN: rotational region cnn for orientation robust scene text detection[EB/OL]. [2020-11-30]. https://arxiv.org/abs/1706.09579v2
|
29 |
WANG X , SUN H , FU K , et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10 (1): 132- 140.
doi: 10.3390/rs10010132
|
30 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
31 |
CAI Z , VASCONCELOS N . Cascade R-CNN: high quality target detection and instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2019,
|
32 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality target detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
33 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
34 |
安静. 基于数学形态学的图像增强算法及其应用[D]. 兰州: 西北师范大学, 2016.
|
|
AN J. Image enhancement algorithm based on mathematical morphology and its application[D]. Lanzhou: Northwest Normal University, 2015.
|
35 |
OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076
|