1 |
DAI Z N, ZHANG X G, BAI Y C. A method of high accuracy velocity measurement for LFM radar[C]//Proc. of the International Conference on Wireless Communication & Signal Processing, 2015.
|
2 |
ZHENG J B , SU T , ZHU W T , et al. Radar high-speed target detection based on the scaled inverse fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8 (3): 1108- 1119.
|
3 |
CHEN X L, GUAN J, ZHAO Z J, et al. Radar maneuvering target detection based on scaling processing and Radon-Fourier transform[C]//Proc. of the IET Radar Conference, 2015.
|
4 |
ZHENG J B , SU T , LIU H W , et al. Radar high-speed target detection based on the frequency-domain deramp-keystone transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9 (1): 285- 294.
|
5 |
CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans.on Aerospace & Electronic Systems, 2006, 42 (1): 2- 21.
|
6 |
XU G , XING M D , YANG L , et al. Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy[J]. IET Radar Sonar & Navigation, 2016, 10 (3): 586- 594.
|
7 |
ZHOU W , YE C M , JIN R J , et al. ISAR imaging of targets with rotating parts based on robust principal component analysis[J]. IET Radar Sonar & Navigation, 2017, 11 (4): 563- 569.
|
8 |
包云霞, 毛二可, 何佩琨. 基于一维高分辨距离像的相关测速补偿算法[J]. 北京理工大学学报, 2008, 28 (2): 160- 163.
|
|
BAO Y X , MAO E K , HE P K . Motion compensation method based on one-dimension high resolution range profile cross-correlation[J]. Transactions of Beijing Institute of Technology, 2008, 28 (2): 160- 163.
|
9 |
PENG S B , XU J , PENG Y N , et al. Parametric inverse synthetic aperture radar manoeuvring target motion compensation based on particle swarm optimiser[J]. IET Radar Sonar & Navigation, 2011, 5 (3): 305- 314.
|
10 |
CHEN C C , ANDREWS H C . Target-motion-induced radar imaging[J]. IEEE Trans.on Aerospace & Electronic Systems, 1980, 16 (1): 2- 14.
|
11 |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
|
|
BAO Z , XING M D , WANG D . Radar imaging technology[M]. Beijing: Publishing House of Electronic Industry, 2005.
|
12 |
CHEN V C . The micro-Doppler effect in radar[M]. America: Artech House, 2011.
|
13 |
WANG C, WANG J, ZHANG X D. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]//Proc. of the IEEE International Conference on Acoustics, 2017: 2437-2441.
|
14 |
REN M Q, TIAN Y H. Radar signal cognition based time-frequency transform and high order spectra analysis[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017.
|
15 |
CEXUS J C, TOUMI A. Radar target recognition using time-frequency analysis and polar transformation[C]//Proc. of the 4th International Conference on Advanced Technologies for Signal and Image Processing, 2018.
|
16 |
REN K , DU L , WANG B S , et al. Statistical compressive sensing and feature extraction of time-frequency spectrum from narrowband radar[J]. IEEE Trans.on Aerospace & Electronic Systems, 2020, 56 (1): 326- 342.
|
17 |
WANG Y , WANG Z F , ZHAO B , et al. Compensation for high-frequency vibration of platform in SAR imaging based on adaptive chirplet decomposition[J]. IEEE Geoscience & Remote Sensing Letters, 2016, 13 (6): 792- 795.
|
18 |
CHEN W J, SHENG J, YUAN L, et al. A method separating echo by adaptive chirplet signal decomposition based on FRFT[C]//Proc. of the 11th International Symposium on Antennas, Propagation and EM Theory, 2016: 869-872.
|
19 |
YANG B Y , YANG Z B , SUN R B , et al. Fast nonlinear Chirplet dictionary-based sparse decomposition for rotating machi-nery fault diagnosis under nonstationary conditions[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 68 (12): 4736- 4745.
doi: 10.1109/TIM.2019.2900886
|
20 |
PUKHOVA V M, STEPANOVA M S. Up-Chirplet and down-Chirplet transforms of non-stationary signals[C]//Proc. of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019: 1221-1225.
|
21 |
肖涛, 汤子跃, 黄强辉. 一种基于滑窗相关的回波包络对齐方法[J]. 空军雷达学院学报, 2006, 20 (4): 276- 278.
|
|
XIAO T , TANG Z Y , HUANG Q H . A method of echo range alignment based on sliding-window correlation[J]. Journal of Air Force Radar Academy, 2006, 20 (4): 276- 278.
|
22 |
VEHMAS R, JYLHA J. Improving the estimation accuracy and computational efficiency of ISAR range alignment[C]//Proc. of the 14th European Radar Conference, 2017: 13-16.
|
23 |
LIU Y, WANG L, BI G A, et al. Novel ISAR range alignment via minimizing the entropy of the sum range profile[C]//Proc. of the 21st International Radar Symposium, 2020: 135-138.
|
24 |
王勇, 姜义成. 基于自适应Chirplet分解的舰船目标ISAR成像[J]. 电子与信息学报, 2006, 28 (6): 982- 984.
|
|
WANG Y , JIANG Y C . The ISAR imaging of ships based on adaptive chirplet decomposition[J]. Journal of Electronics and Information Technology, 2006, 28 (6): 982- 984.
|
25 |
LU H, ZHANG S S, KONG L K. A new WVD algorithm jointed CLEAN technique in ISAR imaging[C]//Proc. of the 2nd International Conference on Intelligent Systems Design and Engineering Application, 2012: 69-72.
|
26 |
LI J , STOICA P . Efficient mixed-spectrum estimation with applications to target feature extraction[J]. IEEE Trans.on Signal Processing, 1996, 44 (2): 281- 295.
doi: 10.1109/78.485924
|
27 |
YAO Y, WU L N. A new method of velocity measurement based on CRT algorithm in dual-frequency pulse Doppler radar[C]//Proc. of the National Doctoral Academic Forum on Information and Communications Technology, 2013.
|