1 |
黄友火, 刘其中, 魏文博, 等. 天线宽带匹配网络的粒子群优化设计[J]. 微波学报, 2007, 23 (5): 11- 13.
doi: 10.3969/j.issn.1005-6122.2007.05.003
|
|
HUANG Y H , LIU Q Z , WEI W B , et al. Optimal design of a matching network for a broadband antenna[J]. Journal of Microwaves, 2007, 23 (5): 11- 13.
doi: 10.3969/j.issn.1005-6122.2007.05.003
|
2 |
徐龙海, 黄进, 谢井. 基于遗传算法的2.45 GHz RFID天线优化设计[J]. 电子器件, 2014, 3, 450- 453.
|
|
XU L H , HUANG J , XIE J . An optimized design of 2.45 GHz RFID tag antenna based on genetic algorithm[J]. Chinese Journal of Electron Devices, 2014, 3, 450- 453.
|
3 |
张锋, 王东峰, 纪奕才, 等. 基于模拟退火法的Delta天线的优化设计[J]. 中国科学院大学学报, 2012, 29 (3): 372- 376.
|
|
ZHANG F , WANG D F , JI Y C , et al. Optimization and design of Delta antenna based on simulated annealing[J]. Journal of the Gra-duate School of the Chinese Academy of Sciences, 2012, 29 (3): 372- 376.
|
4 |
韩帅涛, 侯德亭, 邹伟, 等. 基于UTD和GA混合算法的无人机载天线布局优化[J]. 太赫兹科学与电子信息学报, 2016, 14 (5): 733- 733.
|
|
HAN S T , HOU D T , ZOU W , et al. Layout optimization of UVA airborne antennas based on GA and UTD[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14 (5): 733- 733.
|
5 |
FORRESTER A , KEANE A . Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45 (1-3): 50- 79.
doi: 10.1016/j.paerosci.2008.11.001
|
6 |
SINGH P , ROSSI M , COUCKUYT I , et al. Constrained multi-objective antenna design optimization using surrogates[J]. International Journal of Numerical Modelling, 2017, 30 (6): e2248.
doi: 10.1002/jnm.2248
|
7 |
LI H T, ZHOU J Z, KANG L, et al. Optimization design of skin antenna based on Bayesian optimization[C]//Proc. of the IEEE 7th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, 2017: 78-83.
|
8 |
WU Q , WANG H M , HONG W . Multi-stage collaborative machine learning and its application to antenna modeling and optimization[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (5): 3397- 3409.
doi: 10.1109/TAP.2019.2963570
|
9 |
KOZIEL S , BEKASIEWICZ A . Multi-objective design of antennas using variable-fidelity simulations and surrogate models[J]. IEEE Trans.on Antennas and Propagation, 2013, 61 (12): 5931- 5939.
doi: 10.1109/TAP.2013.2283599
|
10 |
KOZIEL S , BEKASIEWICZ A , COUCKUYT I , et al. Efficient multi-objective simulation-driven antenna design using Co-Kriging[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (11): 5900- 5905.
doi: 10.1109/TAP.2014.2354673
|
11 |
KOZIEL S, OGURTSOV S, ZIENIUTYCZ W, et al. Fast simulation-driven design of a planar UWB dipole antenna with an integrated balun[C]//Proc. of the 9th European Conference on Antennas and Propagation, 2015.
|
12 |
KOZIEL S , BEKASIEWICZ A , ZIENIUTYCZ W , et al. Expedited EM-driven multi-objective antenna design in highly dimensional parameter spaces[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 631- 634.
doi: 10.1109/LAWP.2014.2313698
|
13 |
LIU B , ALIAKBARIAN H , MA Z , et al. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (1): 7- 18.
doi: 10.1109/TAP.2013.2283605
|
14 |
JAIN S K , PATNAIK A , SINHA S N . Design of custom-made stacked patch antennas: a machine learning approach[J]. International Journal of Machine Learning and Cybernetics, 2013, 4 (3): 189- 194.
doi: 10.1007/s13042-012-0084-x
|
15 |
TAK J , KANTEMUR A , SHARMMA Y , et al. A 3-D-printed W-band slotted waveguide array antenna optimized using machine learning[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (11): 2008- 2012.
doi: 10.1109/LAWP.2018.2857807
|
16 |
YANG Z B , ZHOU J Z , LI H T , et al. Design of hexagonal circularly polarized antenna array using paralleled dynamic mini-mum lower confidence bound[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28 (2): e21184.
doi: 10.1002/mmce.21184
|
17 |
LEDESMA S , RUIZ-PINALES J , CERDA-VILLAFANA G , et al. A hybrid method to design wire antennas: design and optimization of antennas using artificial intelligence[J]. IEEE Antennas and Propagation Magazine, 2015, 57 (4): 23- 31.
doi: 10.1109/MAP.2015.2453912
|
18 |
RASMUSSEN C E , WILLIAMS C K I . Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006.
|
19 |
SHAHRIARI B , SWERSKY K , WANG Z , et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104 (1): 148- 175.
doi: 10.1109/JPROC.2015.2494218
|
20 |
LYU W L , XUE P , YANG F , et al. An efficient Bayesian optimization approach for automated optimization of analog circuits[J]. EEE Trans.on Circuits and Systems Ⅰ: Regular Papers, 2018, 65 (6): 1954- 1967.
doi: 10.1109/TCSI.2017.2768826
|
21 |
ZHANG S H, YANG F, ZHOU D, et al. An efficient asynchronous batch Bayesian optimization approach for analog circuit synthesis[C]//Proc. of the IEEE 57th Design Automation Conference, 2020.
|
22 |
LYU W L, YANG F, YAN C H, et al. Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design[C]//Proc. of 35th International Confe-rence on Machine Learning, 2018.
|
23 |
TALNIKAR C. Methods for design optimization using high fidelity turbulent flow simulations[D]. Cambridge: Massachusetts Institute of Technology, 2015.
|
24 |
AKIBA T, SANO S, YANASE T, et al. Optuna: a next-gene-ration hyperparameter optimization framework[C]//Proc. of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining, 2019.
|
25 |
JIN H F, SONG Q Q, HU X. Auto-keras: an efficient neural architecture search system[C]//Proc. of the 25th ACM SIGKDD International Conference, 2019.
|
26 |
COWEN-RIVERS A, LYU W, WANG Z, et al. HEBO: heteroscedastic evolutionary Bayesian optimization[EB/OL]. [2021-01-10]. https://arXiv:2012.03826, 2020.
|
27 |
LIU J, TUNGUZ B, TITERICZ G. GPU accelerated exhaustive search for optimal ensemble of Black-Box optimization algorithms[EB/OL]. [2021-01-10]. https://arXiv:2012.04201, 2020.
|
28 |
AWAD N H, SHALA G, DENG D, et al. Squirrel: a switching hyperparameter optimizer[EB/OL]. [2021-01-10]. https://arXiv:2012.08180, 2020.
|
29 |
SAZANOVICH M, NIKOLSKAYA A, BELOUSOV Y, et al. Solving black-box optimization challenge via learning search space partition for local Bayesian optimization[EB/OL]. [2021-01-10]. https://arXiv:2012.10335, 2020.
|
30 |
WU J, CAO M, SHAN L, et al. Higher performance for AutoML: the benefit of various ensemble Bayesian optimization strategy[EB/OL]. [2020-12-20]. https://valohaichirpprod.blob.core.windows.net/papers/duxiaoman.pdf.
|
31 |
FERNANDO N. Bayesian optimization: open source constrained global optimization tool for Python[EB/OL]. [2020-10-10]. https://github.com/fmfn/BayesianOptimization.
|