1 |
余协正, 陈宁, 陈萍萍, 等. 临近空间高超声速飞行器目标特性及突防威胁分析[J]. 航天电子对抗, 2019, 35 (6): 24- 29.
|
|
YU X Z , CHEN N , CHEN P P , et al. Target characteristics and penetration threats analysis of hypersonic vehicle in the near-space[J]. Aerospace Electronic Warfare, 2019, 35 (6): 24- 29.
|
2 |
ZHOU J , LEI H M , ZHANG D Y . Online optimal midcourse trajectory modification algorithm for hypersonic vehicle interceptions[J]. Aerospace Science and Technology, 2017, 63, 266- 277.
doi: 10.1016/j.ast.2016.12.022
|
3 |
LEI H M , ZHOU J , ZHAI D L , et al. Optimal midcourse tra-jectory cluster generation and trajectory modification for hypersonic interceptions[J]. Journal of Systems Engineering and Electronics, 2017, 28 (6): 1162- 1173.
doi: 10.21629/JSEE.2017.06.14
|
4 |
王华吉, 雷虎民, 张大元, 等. 反临近空间高超声速目标拦截弹中末制导交接班窗口[J]. 国防科技大学学报, 2018, 40 (5): 4- 11.
|
|
WANG H J , LEI H M , ZHANG D Y , et al. Midcourse and terminal guidance handover window for interceptor against near space hypersonic target[J]. Journal of National University of Defense Technology, 2018, 40 (5): 4- 11.
|
5 |
LI K B , SHIN H S , TSOURDOS A , et al. Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (1): 711- 722.
|
6 |
HE S M , LIN D F , WANG J . Compound control methodology for a robust missile autopilot design[J]. Journal of Aerospace Engineering, 2015, 28 (6): 04014145.
doi: 10.1061/(ASCE)AS.1943-5525.0000484
|
7 |
LIN Y P , LINC L , LI Y H . Development of 3-D modified proportional navigation guidance law against high-speed targets[J]. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (1): 677- 687.
doi: 10.1109/TAES.2013.6404133
|
8 |
FENG T . Unified approach to missile guidance law for missile and target with bounded maneuverability[J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4): 1178- 1199.
doi: 10.1109/TAES.2005.1561882
|
9 |
FENG T . Capture region of a 3D PPN guidance law for intercepting high-speed targets[J]. Asian Journal of Control, 2012, 14 (5): 1215- 1226.
doi: 10.1002/asjc.396
|
10 |
FENG T . Capture region of a GIPN guidance law for missile and target with bounded maneuverability[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1): 201- 213.
doi: 10.1109/TAES.2011.5705670
|
11 |
LI K B , ZHANG T , CHEN L . Ideal proportional navigation for exo-atmospheric interception[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 976- 985.
doi: 10.1016/j.cja.2013.06.007
|
12 |
LI K B , CHEN L , TANG G . Improved differential geo-metric guidance commands for endoatmospheric interception of high-speed targets[J]. Science China Technological Sciences, 2013, 56 (2): 518- 528.
doi: 10.1007/s11431-012-5087-z
|
13 |
PRASANNA H M , GHOSE D . Retro-proportional-navigation: a new guidance law for interception of high-speed targets[J]. Journal of Guidance, Control and Dynamics, 2012, 35 (2): 377- 386.
doi: 10.2514/1.54892
|
14 |
周觐, 雷虎民, 侯峰, 等. 拦截高速目标的比例与反比例导引捕获区分析[J]. 宇航学报, 2018, 39 (9): 1002- 1011.
|
|
ZHOU J , LEI H M , HOU F , et al. Capture region analysis of proportional navigation and retro-proportional navigation gui-dance for hypersonic target interception[J]. Aerospace Science and Technology, 2018, 39 (9): 1002- 1011.
|
15 |
于大腾, 王华, 李林森, 等. 能量约束下的动能拦截弹逆轨拦截攻击区建模[J]. 宇航学报, 2017, 38 (7): 704- 713.
|
|
YU D T , WANG H , LI L S , et al. Attack area modeling of kinetic kill vehicle head-on interception with energy constraint[J]. Journal of Astronautics, 2017, 38 (7): 704- 713.
|
16 |
YU D T, WANG H, LI K B, et al. The capture region of TPN guidance law for orbital pursuit-evasion with limited maneuvera-bility[C]//Proc. of IEEE Chinese Guidance, Navigation and Control Conference, 2016: 937-942.
|
17 |
周觐, 雷虎民. 真比例导引反高速目标拦截能力分析[J]. 系统工程与电子技术, 2018, 40 (10): 2296- 2304.
doi: 10.3969/j.issn.1001-506X.2018.10.21
|
|
ZHOU J , LEI H M . Interception capability analysis of the true proportional navigation guidance law against hypersonic targets[J]. Systems Engineering and Electronics, 2018, 40 (10): 2296- 2304.
doi: 10.3969/j.issn.1001-506X.2018.10.21
|
18 |
LI K B , SU W S , CHEN L . Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach[J]. Aerospace Science and Technology, 2017, 69, 333- 341.
|
19 |
白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报, 2020, 41 (8): 338- 348.
|
|
BAI Z H , LI K B , SU W S , et al. Capture region of RTPN guidance law against arbitrarily maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (8): 338- 348.
|
20 |
黄景帅, 张洪波, 汤国建, 等. 机动目标拦截新型微分几何制导律设计[J]. 系统工程与电子技术, 2018, 40 (10): 2288- 2295.
doi: 10.3969/j.issn.1001-506X.2018.10.20
|
|
HUANG J S , ZHANG H B , TANG G J , et al. Design of differential geometric guidance law against maneuvering targets[J]. Systems Engineering and Electronics, 2018, 40 (10): 2288- 2295.
doi: 10.3969/j.issn.1001-506X.2018.10.20
|
21 |
LI K B , SU W S , CHEN L . Performance analysis of differential geometric guidance law against high-speed target with arbitrarily maneuvering acceleration[J]. Journal of Aerospace Engineering, 2019, 233 (10): 3547- 3563.
|
22 |
LIANG H Z , WANG J Y , WANG Y H , et al. Optimal guidance against active defense ballistic missiles via differential game strategies[J]. Chinese Journal of Aeronautic, 2020, 33 (3): 978- 989.
doi: 10.1016/j.cja.2019.12.009
|
23 |
BANERJEE A, NABI M, RAGHUNATHAN T. Time-energy optimal guidance strategy for realistic interceptor using pseudospectral method[J]. Transactions of the Institute of Measurement and Control, 2020, 42(5): 014233122091091.
|
24 |
WANG X , QIU X , PRAVEEN A . Study on fuzzy neural sliding mode guidance law with terminal angle constraint for maneuvering target[J]. Mathematical Problems in Engineering, 2020, 4597937.
|
25 |
杨云刚, 刘钧圣, 杨敏, 等. 滑模变结构导引律在防空反导技术中的应用[J]. 指挥控制与仿真, 2018, 40 (4): 101- 103.
|
|
YANG Y G , LIU J X , YANG M , et al. Application of sliding mode variable structure guidance law in air defense and anti-missile technology[J]. Command Control & Simulation, 2018, 40 (4): 101- 103.
|
26 |
XIA R S , CHEN M , WU Q X , et al. Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle[J]. Neurocomputing, 2020, 379, 41- 52.
|
27 |
LAN Y T , CHEN X D . Trajectory tracking system of wheeled robot based on immune algorithm and sliding mode variable structure[J]. Intelligent Service Robotics, 2020,
doi: 10.1007/s11370-020-00325-8
|
28 |
LEONARDO A . Iterative learning control for homing guidance design of missiles[J]. Defense Technology, 2017, 13 (5): 360- 366.
|
29 |
HUANG H M , HU Y M , et al. Study on the performance of spatial discretization schemes for hypersonic flow[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018,
|
30 |
HU Y M , HUANG H M , GUO J , et al. Shock wave standoff distance of near space hypersonic vehicles[J]. Science China (Technological Sciences), 2017, 8 (60): 5- 13.
|