1 |
KERNS A J , SHEPARD D P , BHATTI J A , et al. Unmanned aircraft capture and control via GPS spoofing[J]. Journal of Field Robotics, 2014, 31 (4): 617- 636.
doi: 10.1002/rob.21513
|
2 |
SAFADINHO D , RAMOS J , RIBEIRO R , et al. UAV landing using computer vision techniques for human detection[J]. Sensors, 2020, 20 (3): 613.
doi: 10.3390/s20030613
|
3 |
高升, 艾剑良, 王之豪. 混合种群RRT无人机航迹规划方法[J]. 系统工程与电子技术, 2020, 42 (1): 101- 107.
|
|
GAO S , AI J L , WANG Z H . Mixed population RRT algorithm for UAV path planning[J]. Systems Engineering and Electronics, 2020, 42 (1): 101- 107.
|
4 |
ZHANG Z , LI J X , WANG J . Sequential convex programming for nonlinear optimal control problem in UAV path planning[J]. Aerospace Science & Technology, 2018, 76 (1): 280- 290.
|
5 |
ZHENG C W , LI L , XU F J , et al. Evolutionary route planner for unmanned air vehicles[J]. IEEE Trans. on Robotics, 2005, 21 (4): 609- 620.
doi: 10.1109/TRO.2005.844684
|
6 |
王琼, 刘美万, 任伟建, 等. 无人机航迹规划常用算法综述[J]. 吉林大学学报(信息科学版), 2019, 37 (1): 58- 67.
doi: 10.3969/j.issn.1671-5896.2019.01.008
|
|
WANG Q , LIU M W , REN W J , et al. Overview of common algorithms for UAV path planning[J]. Journal of Jilin University (Information Science Edition), 2019, 37 (1): 58- 67.
doi: 10.3969/j.issn.1671-5896.2019.01.008
|
7 |
SARAVANAKUMAR S , ASOKAN T . Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space[J]. Intelligent Service Robotics, 2013, 6 (4): 211- 224.
doi: 10.1007/s11370-013-0138-2
|
8 |
KUMAR P B , RAWAT H , PARHI D R . Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems, 2019, 36 (2): 1- 12.
|
9 |
YAO Q F , ZHENG Z Y , QI L , et al. Path planning method with improved artificial potential field — a reinforcement learning perspective[J]. IEEE Access, 2020, 8, 135513- 135523.
doi: 10.1109/ACCESS.2020.3011211
|
10 |
CHEN P Y , SHEN P F , ZHANG P , et al. Path planning of underwater terrain-aided navigation based on improved artificial potential field method[J]. Marine Technology Society Journal, 2019, 53 (2): 65- 74.
doi: 10.4031/MTSJ.53.2.7
|
11 |
SINGH Y , SHARMA S , SUTTON R , et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169 (9): 187- 201.
|
12 |
SONG R , LIU Y C , BUCKNALL R . Smoothed A* algorithm for practical unmanned surface vehicle path planning[J]. Applied Ocean Research, 2019, 83, 9- 20.
doi: 10.1016/j.apor.2018.12.001
|
13 |
BEHNCK L P , DOERING D , PEREIRACE , et al. A modified simulated annealing algorithm for SUAVs path planning[J]. IFAC PapersOnLine, 2015, 48 (10): 63- 68.
doi: 10.1016/j.ifacol.2015.08.109
|
14 |
GAO W X , TANG Q , YE B F , et al. An enhanced heuristic ant colony optimization for mobile robot path planning[J]. Soft Computing, 2020, 24 (8): 6139- 6150.
doi: 10.1007/s00500-020-04749-3
|
15 |
PANDEY P , SHUKLA A , TIWARI R . Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm[J]. International Journal of System Assurance Engineering and Management, 2018, 9 (4): 836- 852.
|
16 |
ROBERGE V , TARBOUCHI M , LABONTE G . Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Trans. on Industrial Informatics, 2013, 9 (1): 132- 141.
doi: 10.1109/TII.2012.2198665
|
17 |
XIN J F , ZHONG J B , YANG F R , et al. An improved genetic algorithm for path-planning of unmanned surface vehicle[J]. Sensors, 2019, 19 (11): 2640.
doi: 10.3390/s19112640
|
18 |
LAMINI C , BENHLIMA S , ELBEKRI A . Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127 (1): 180- 189.
|
19 |
KHATIB O . Real-time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotics Research, 1986, 5 (1): 90- 98.
doi: 10.1177/027836498600500106
|
20 |
MABROUK M H , MCINNES C R . Solving the potential field local minimum problem using internal agent states[J]. Robotics and Autonomous Systems, 2018, 56 (12): 1050- 1060.
|
21 |
ZHU Y , ZHANG T , SONG J Y . Study on the local minima problem of path planning using potential field method in unknown environments[J]. Acta Automatica Sinica, 2010, 36 (8): 1122- 1130.
doi: 10.3724/SP.J.1004.2010.01122
|
22 |
韩知玖, 吴文江, 李孝伟, 等. 一种改进的动力学约束人工势场法[J]. 上海大学学报(自然科学版), 2019, 25 (6): 879- 887.
|
|
HAN Z J , WU W J , LI X W , et al. An improved artificial potential field method constrained by a dynamic model[J]. Journal of Shanghai University (Natural Science), 2019, 25 (6): 879- 887.
|
23 |
梁献霞, 刘朝英, 宋雪玲, 等. 改进人工势场法的移动机器人路径规划研究[J]. 计算机仿真, 2018, 35 (4): 291- 294, 361.
doi: 10.3969/j.issn.1006-9348.2018.04.063
|
|
LIANG X X , LIU C Y , SONG X L , et al. Research on improved artificial potential field approach in local path planning for mobile robot[J]. Computer Simulation, 2018, 35 (4): 291- 294, 361.
doi: 10.3969/j.issn.1006-9348.2018.04.063
|
24 |
LADDHA A, KOCAMAZ M K, NAVARRO L E, et al. Map-supervised road detection[C]//Proc. of the IEEE Intelligent Vehicles Symposium, 2016: 118-123.
|
25 |
CHEN Y B , LUO G C , MEI Y S , et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47 (6): 1407- 1420.
doi: 10.1080/00207721.2014.929191
|
26 |
王强, 张安, 吴忠杰. 改进人工势场法与模拟退火算法的无人机航路规划[J]. 火力与指挥控制, 2014, (8): 70- 73.
doi: 10.3969/j.issn.1002-0640.2014.08.017
|
|
WANG Q , ZHANG A , WU Z J . UAV route planning based on improved artificial potential field method and simulated annealing algorithm[J]. Fire Control and Command Control, 2014, (8): 70- 73.
doi: 10.3969/j.issn.1002-0640.2014.08.017
|
27 |
XU J , PARK K S . A real-time path planning algorithm for cable-driven parallel robots in dynamic environment based on artificial potential guided RRT[J]. Microsystem Technologies, 2020, 26 (11): 3533- 3546.
doi: 10.1007/s00542-020-04948-w
|
28 |
PARK S O , LEE M C , KIM J . Trajectory planning with collision avoidance for redundant robots using jacobian and artificial potential field-based real-time inverse kinematics[J]. International Journal of Control, Automation and Systems, 2020, 18 (8): 2095- 2107.
doi: 10.1007/s12555-019-0076-7
|
29 |
ZHA M , WANG Z W , FENG J , et al. Unmanned vehicle route planning based on improved artificial potential field method[J]. Journal of physics: Conference series, 2020, 1453 (1): 012059.
doi: 10.1088/1742-6596/1453/1/012059/pdf
|
30 |
SONG J , HAO C , SU J C . Path planning for unmanned surface vehicle based on predictive artificial potential field[J]. International Journal of Advanced Robotic Systems, 2020, 17 (2): 1- 13.
|
31 |
程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55 (23): 29- 34.
doi: 10.3778/j.issn.1002-8331.1904-0472
|
|
CHENG Z , ZHANG Z A , LI J Z , et al. Mobile robots path planning based on improved artificial potential field[J]. Computer Engineering and Applications, 2019, 55 (23): 29- 34.
doi: 10.3778/j.issn.1002-8331.1904-0472
|