1 |
MOCHALOV A V, ROUMIANTSEV O A. Strapdown inertial navigation system on laser gyroscopes in the attitude definition mode[C]//Proc. of the 2nd International Conference on Lasers for Measurement and Information Transfer, 2002, 4680: 72-79.
|
2 |
史宏洋, 尤太华, 张义, 等. 基于角速率匹配的船体变形实船测量技术研究[J]. 船舶力学, 2017, 21 (4): 429- 436.
doi: 10.3969/j.issn.1007-7294.2017.04.007
|
|
SHI H Y , YOU T Y , ZHANG Y , et al. Research on ship deformation measurement technology based on angular rate matching[J]. Journal of Ship Mechanics, 2017, 21 (4): 429- 436.
doi: 10.3969/j.issn.1007-7294.2017.04.007
|
3 |
XIA X, SUN Q, ZHANG Y, et al. Ship deformation measurement based on angular rate matching method and quasi-static model[C]//Proc. of the IEEE International Conference on Control, Automation and Information Sciences, 2016: 137-142.
|
4 |
郑佳兴, 秦石乔, 王省书, 等. 基于姿态匹配的船体变形测量方法[J]. 中国惯性技术学报, 2010, 18 (2): 175- 180.
|
|
ZHENG J X , QIN S Q , WANG X S , et al. An improved method of ship deformation measurement based on attitude matching[J]. Journal of Chinese Inertial Technology, 2010, 18 (2): 175- 180.
|
5 |
秦石乔, 王省书, 黄宗升, 等. 考虑准静态缓变量的船体变形角测量[J]. 中国惯性技术学报, 2011, 19 (1): 6- 10.
|
|
QIN S Q , WANG X S , HUANG Z S , et al. Ship hull angular deformation measurement taking slow-varying quasi-static component into account[J]. Journal of Chinese Inertial Technology, 2011, 19 (1): 6- 10.
|
6 |
彭侠夫, 何荧, 杨功流, 等. 基于姿态角匹配的无模型船体变形测量方法[P]. 福建省: CN108871322B, 2021-02-09.
|
|
PENG X F, HE Y, YANG G L, et al. Model free hull deformation measurement method based on attitude angle matching[P]. Fujian: CN108871322B, 2021-02-09.
|
7 |
HE Y , ZHANG X L , PENG X F . Research on hull deformation measurement for large azimuth misalignment angle based on attitude quaternion[J]. Optik, 2019, 182, 159- 169.
doi: 10.1016/j.ijleo.2018.11.023
|
8 |
HE Y , ZHANG X L , PENG X F . A model-free hull deformation measurement method based on attitude quaternion matching[J]. IEEE Access, 2018, 6, 8864- 8869.
doi: 10.1109/ACCESS.2018.2807183
|
9 |
PLATANIONTIS K N , ANDROUTSOS D , VENETSANOPOULOS A . Nonlinear filtering of non-Gaussian noise[J]. Journal of Intelligent and Robotic Systems, 1997, 2 (1): 207- 231.
|
10 |
孙昌跃, 邓正隆. 舰体挠曲运动在线建模研究[J]. 系统工程与电子技术, 2007, 29 (2): 243- 245.
doi: 10.3321/j.issn:1001-506X.2007.02.022
|
|
SUN C Y , DENG Z L . Research on the ship flexure on line modeling[J]. Systems Engineering and Electronics, 2007, 29 (2): 243- 245.
doi: 10.3321/j.issn:1001-506X.2007.02.022
|
11 |
张涛, 王帅, 刘兴华. 一种改进的姿态匹配船体变形测量方法[J]. 中国惯性技术学报, 2020, 28 (1): 8- 14.
|
|
ZHANG T , WANG S , LIU X H . An improved method of ship deformation measurement based on attitude matching[J]. Journal of Chinese Inertial Technology, 2020, 28 (1): 8- 14.
|
12 |
苏宛新, 黄春梅, 刘培伟, 等. 自适应Kalman滤波在SINS初始对准中的应用[J]. 中国惯性技术学报, 2010, 18 (1): 44- 47.
|
|
SU W X , HUANG C M , LIU P W , et al. Application of adaptive Kalman filter technique in initial alignment of inertial navigation system[J]. Journal of Chinese Inertial Technology, 2010, 18 (1): 44- 47.
|
13 |
何昆鹏, 王晓雪, 王刚, 等. 改进的自适应卡尔曼滤波在SINS初始对准中的应用[J]. 兵工自动化, 2015, 34 (1): 65- 70.
|
|
HE K P , WANG X X , WANG G , et al. Application of improved adaptive Kalman filter algorithm in SINS initial alignment[J]. Ordnance Industry Automation, 2015, 34 (1): 65- 70.
|
14 |
徐定杰, 贺瑞, 沈锋, 等. 基于新息协方差的自适应渐消卡尔曼滤波器[J]. 系统工程与电子技术, 2011, 33 (12): 2696- 2699.
|
|
XU D J , HE R , SHEN F , et al. Adaptive fading Kalman filter based on innovation covariance[J]. Systems Engineering and Electronics, 2011, 33 (12): 2696- 2699.
|
15 |
钱华明, 葛磊, 彭宇. 多渐消因子卡尔曼滤波及其在SINS初始对准中的应用[J]. 中国惯性技术学报, 2012, 20 (3): 287- 291.
|
|
QIAN H M , GE L , PENG Y . Multiple fading factors Kalman filter and its application in SINS initial alignment[J]. Journal of Chinese Inertial Technology, 2012, 20 (3): 287- 291.
|
16 |
薛海建, 郭晓松, 周召发. 基于自适应多重渐消因子卡尔曼滤波的SINS初始对准方法[J]. 系统工程与电子技术, 2017, 39 (3): 620- 626.
|
|
XUE H J , GUO X S , ZHOU Z F . SINS initial alignment method based on adaptive multiple fading factors[J]. Systems Engineering and Electronics, 2017, 39 (3): 620- 626.
|
17 |
GAO W X , MIAO L J , NI M L . Multiple fading factors Kalman filter for SINS static alignment application[J]. Chinese Journal of Aeronautics, 2011, 24, 476- 483.
|
18 |
高伟, 李敬春, 奔粤阳, 等. 基于多重渐消因子的自适应卡尔曼滤波器[J]. 系统工程与电子技术, 2014, 36 (7): 1405- 1409.
|
|
GAO W , LI J C , BEN Y Y , et al. Adaptive Kalman filter based on multiple fading factors[J]. Systems Engineering and Electronics, 2014, 46 (7): 1405- 1409.
|
19 |
郭士荦, 吴苗, 许江宁, 等. 自适应渐消卡尔曼滤波及其在SINS初始对准中的应用[J]. 武汉大学学报, 2018, 43 (11): 1667- 1672, 1680.
|
|
GUO S L , WU M , XU J N , et al. Adaptive fading Kalman filter and its application in SINS initial alignment[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (11): 1667- 1672, 1680.
|
20 |
ZHA F , GUO S L , LI F . An improved nonlinear filter based on adaptive fading factor applied in alignment of SINS[J]. International Journal for Light and Electron Optics, 2019, 184, 165- 176.
|
21 |
PRINCIPE J C . Information theoretical learning: Renyi's entropy and kernel perspectives[M]. New York: Springer Scien-ce+Business Media, 2010: 60- 128.
|
22 |
CHEN B D , ZHU Y , HU C J , et al. Principe system parameter identification: information criteria and algorithms[M]. London: Elsevier, 2013: 111- 120.
|
23 |
CINAR G T, PRINCIPE J C. Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size[C]//Proc. of the IEEE World Congress on Computational Intelligence, 2012.
|
24 |
REZA I, SEYED A F, HADI S Y, et al. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise[C]//Proc. of the Annual Conference on Information Science and Systems, 2016.
|
25 |
LIU X, QU H, ZHAO J H, et al. Extended Kalman filter under maximum correntropy criterion[C]//Proc. of the International Joint Conference on Neural Networks, 2016.
|
26 |
LIU X , CHEN B D , XU B , et al. Maximum correntropy unscented filter[J]. International Journal of Systems Science, 2017, 48 (8): 1607- 1615.
|
27 |
SHEN T Y , REN W J , HAN M , et al. Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction[J]. Engineering Applications of Artificial Intelligence, 2020, 95, 103797- 103805.
|
28 |
SHI W L , LI Y S , WANG Y Y . Noise-free maximum correntropy criterion algorithm in non-Gaussian environment[J]. IEEE Trans.on Circuits and Systems Ⅱ, 2020, 67 (10): 2224- 2228.
|
29 |
SHI W L , LI Y S , CHEN B D . A separable maximum correntropy adaptive algorithm[J]. IEEE Trans.on Circuits and Systems Ⅱ, 2020, 67 (11): 2797- 2801.
|
30 |
KHODER M, NOURDINE A, MAAN N, et al. Combination of maximum correntropy criterion & α-Rényi divergence for a robust and fail-safe multi-sensor fata fusion[C]//Proc. of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2020: 61-67.
|