系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (11): 3126-3136.doi: 10.12305/j.issn.1001-506X.2021.11.11
全英汇1,*, 方文1, 沙明辉2, 陈侠达1, 阮锋3, 李兴华4, 孟飞2, 吴耀君1, 邢孟道5
收稿日期:
2020-09-18
出版日期:
2021-11-01
发布日期:
2021-11-12
通讯作者:
全英汇
作者简介:
全英汇 (1981—), 男, 教授, 博士研究生导师, 博士,主要研究方向为捷变雷达信号处理|方文 (1996—), 男, 硕士研究生, 主要研究方向为雷达信号处理|沙明辉 (1986—), 男, 研究员, 博士,主要研究方向为雷达抗干扰和信号处理|陈侠达 (1995—), 男, 硕士研究生, 主要研究方向为雷达信号处理|阮锋 (1980—), 男, 研究员, 博士,主要研究方向为雷达信号处理|李兴华 (1982—), 男, 研究员, 博士,主要研究方向为探测制导|孟飞 (1981—), 男, 研究员, 博士,主要研究方向为雷达系统总体设计、信号处理|吴耀君 (1993—), 男, 副研究员,硕士,主要研究方向为雷达系统总体设计、雷达信号处理|邢孟道 (1974—), 男, 教授, 博士研究生导师,博士, 主要研究方向为SAR/ISAR成像和动目标检测等
基金资助:
Yinghui QUAN1,*, Wen FANG1, Minghui SHA2, Xiada CHEN1, Feng RUAN3, Xinghua LI4, Fei MENG2, Yaojun WU1, Mengdao XING5
Received:
2020-09-18
Online:
2021-11-01
Published:
2021-11-12
Contact:
Yinghui QUAN
摘要:
频率捷变技术作为雷达领域的热门研究方向之一, 逐渐受到了国内外学者的重视并在电子对抗领域得到广泛应用。相比于传统固定载频雷达, 脉间捷变频雷达可以自主规避干扰覆盖频段, 难以被侦察机截获识别, 具有独特的主动波形对抗优势。该文系统地介绍了频率捷变雷达的特点, 全面梳理了国内外关于频率捷变新体制雷达的研究成果, 总结了脉间频率捷变雷达信号处理、雷达接收机系统实现的研究进展, 并分析了频率捷变雷达未来的几个发展趋势和所面临的问题。
中图分类号:
全英汇, 方文, 沙明辉, 陈侠达, 阮锋, 李兴华, 孟飞, 吴耀君, 邢孟道. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126-3136.
Yinghui QUAN, Wen FANG, Minghui SHA, Xiada CHEN, Feng RUAN, Xinghua LI, Fei MENG, Yaojun WU, Mengdao XING. Present situation and prospects of frequency agility radar waveform countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126-3136.
1 | 陈亚培. 雷达距离欺骗干扰的对抗方法研究[D]. 西安: 西安电子科技大学, 2012. |
CHEN Y P. Research on methods against radar range deception jamming[D]. Xi'an: Xidian University, 2012. | |
2 |
PRASAD N N S S R K , SHAMEEM V , DESAI U B , et al. Improvement in target detection performance of pulse coded Doppler radar based on multicarrier modulation with fast Fourier transform (FFT)[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2004, 151 (1): 11- 17.
doi: 10.1049/ip-rsn:20040119 |
3 | LIND G . Frequency agility radar range calculation using number of independent pulses[J]. IEEE Trans.on Aerospace and Electronic Systems, 1976, 12 (6): 811- 815. |
4 | BEASLEY E W , WARD H R . A quantitative analysis of sea clutter decorrelation with frequency agility[J]. IEEE Trans.on Aerospace and Electronic Systems, 1968, 4 (3): 468- 473. |
5 | LIND G . Reduction of radar tracking errors with frequency agility[J]. IEEE Trans.on Aerospace and Electronic Systems, 1968, (3): 410- 416. |
6 | NICHOLLS L A . Reduction of radar glint for complex targets by use of frequency agility[J]. IEEE Trans.on Aerospace and Electronic Systems, 1975, (4): 647- 650. |
7 | WEHNER D . Highresolution radar[M]. New York: Artech House, 1987. |
8 | AKHTAR J, OLSEN K E. Frequency agility radar with overlapping pulses and sparse reconstruction[C]//Proc. of the IEEE Radar Conference, 2018: 61-66. |
9 |
HUANG T Y , LIU Y M , MENG H D , et al. Cognitive random stepped frequency radar with sparse recovery[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 858- 870.
doi: 10.1109/TAES.2013.120443 |
10 |
LIU Y M , MENG H D , LI G , et al. Velocity estimation and range shift compensation for high range resolution profiling in stepped-frequency radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7 (4): 791- 795.
doi: 10.1109/LGRS.2010.2047492 |
11 |
HUANG T Y , LIU Y M , XU X , et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Trans.on Signal Processing, 2018, 66 (23): 6228- 6240.
doi: 10.1109/TSP.2018.2876301 |
12 | 黄天耀. 基于稀疏反演的相参捷变频雷达信号处理[D]. 北京: 清华大学, 2014. |
HUANG T Y. Coherent frequency-agile radar signal processing by solving an inverse problem with a sparsity constraint[D]. Beijing: Tsinghua University, 2014. | |
13 | 张晨路, 公绪华, 刘一民. 相参捷变频雷达接收机及动目标处理技术[J]. 现代雷达, 2015, 37 (301): 79- 82, 87. |
ZHANG C L , GONG X H , LIU Y M . Frequency-agile cohe-rent radar receiver design and MTI method[J]. Modern Radar, 2015, 37 (301): 79- 82, 87. | |
14 | 全英汇. 稀疏信号处理在雷达检测和成像中的应用研究[D]. 西安: 西安电子科技大学, 2012. |
QUAN Y H. Study on sparse signal processing for radar detection and imaging application[D]. Xi'an: Xidian University, 2012. | |
15 |
陈超, 郑远, 胡仕友, 等. 频率捷变反舰导弹导引头相参积累技术研究[J]. 宇航学报, 2011, 32 (8): 1819- 1825.
doi: 10.3873/j.issn.1000-1328.2011.08.025 |
CHEN C , ZHENG Y , HU S Y , et al. A study of coherent technique of frequency-agile radar for antiship missile[J]. Journal of Astronautics, 2011, 32 (8): 1819- 1825.
doi: 10.3873/j.issn.1000-1328.2011.08.025 |
|
16 | HUANG T Y, LIU Y M, LI G, et al. Randomized stepped frequency ISAR imaging[C]//Proc. of the IEEE Radar Confe-rence, 2012: 553-557. |
17 | MCDONAL M, DAMINI A. Martime radar detection perfor-mance of fast and slow scan radars using frequency agility[C]//Proc. of the IEEE Radar Conference, 2008. |
18 |
LUMINATI J E , HALE T B , TEMPLE M A , et al. Doppler aliasing reduction in SAR imagery using stepped-frequency waveforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (1): 163- 175.
doi: 10.1109/TAES.2007.357124 |
19 | 茅于海. 频率捷变雷达[M]. 北京: 国防工业出版社, 1981. |
MAO Y H . Frequency agility radar[M]. Beijing: National Defense Industry Press, 1978. | |
20 | 王忠. Ku波段非相参捷变频频综系统[D]. 西安: 西北工业大学, 2001. |
WANG Z. The Ku-band frequency synthesizer using incoherent frequency[D]. Xi'an: Northwestern Polytechnical University, 2001. | |
21 | HUGHES E. Piecewise cumulative Weibull modelling of radar cross section[C]//Proc. of the International Conference on Radar Systems, 2017. |
22 | 吴耀君. 脉间频率捷变雷达抗干扰研究[D]. 西安: 西安电子科技大学, 2018. |
WU Y J. Research on anti-jamming performance of frequency agility radar[D]. Xi'an: Xidian University, 2018. | |
23 | 龙腾. 频率步进雷达信号的多普勒性能分析[J]. 现代雷达, 1996, 18 (2): 31- 37, 65. |
LONG T . Doppler performance analysis of frequency stepped radar signal[J]. Modern Radar, 1996, 18 (2): 31- 37, 65. | |
24 |
李眈, 龙腾. 步进频率雷达目标去冗余算法[J]. 电子学报, 2000, 28 (6): 55- 59.
doi: 10.3321/j.issn:0372-2112.2000.06.015 |
LI C , LONG T . Target's redundance removed algorithms of step frequency radar[J]. Acta Electronic Sinica, 2000, 28 (6): 55- 59.
doi: 10.3321/j.issn:0372-2112.2000.06.015 |
|
25 |
AXELSSON S R J . Analysis of random step frequency radar and comparison with experiments[J]. IEEE Trans.on Geo-science and Remote Sensing, 2007, 45 (4): 890- 904.
doi: 10.1109/TGRS.2006.888865 |
26 | HOURANI A, EVANS R J, MORAN B, et al. Efficient range-Doppler processing for random stepped frequency radar in automotive applications[C]//Proc. of the IEEE 85 th Vehicular Technology Conference, 2017. |
27 |
MARIC S V , TITLEBAUM E L . A class of frequency hop codes with nearly ideal characteristics for use in multiple-access spread-spectrum communications and radar and sonar systems[J]. IEEE Trans.on Communications, 1992, 40 (9): 1442- 1447.
doi: 10.1109/26.163565 |
28 | HE X H, HU L B, WU Z P, et al. Optimal sidelobe suppression filters design with a constraint of maximum loss in process gain[C]//Proc. of the International Radar Conference, 2009. |
29 | ZHOU R X, XIA G F, ZHAO Y, et al. Coherent signal processing method for frequency-agile radar[C]//Proc. of the IEEE 12th International Conference on Electronic Measurement & Instruments, 2015: 431-434. |
30 | ZHAO D H, WEI Y S. Coherent process and optimal weighting for sparse frequency agility waveform[C]//Proc. of the IEEE Radar Conference, 2015: 334-338. |
31 | TIAN R Q , LIN C Y , BAO Q L , et al. Coherent integration method of high-speed target for frequency agile radar[J]. IEEE Access, 2018, 18984- 18993. |
32 |
WANG D H , LIN C Y , BAO Q L , et al. Long-time coherent integration method for high-speed target detection using frequency agile radar[J]. Electronics Letters, 2016, 52 (11): 960- 962.
doi: 10.1049/el.2016.0821 |
33 |
LIU Z , WEI X Z , LI X . Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing[J]. IEEE Sensors Journal, 2013, 13 (7): 2523- 2534.
doi: 10.1109/JSEN.2013.2249762 |
34 |
ANITORI L , MALEKI A , OTTEN M , et al. Design and analy- sis of compressed sensing radar detectors[J]. IEEE Trans.on Signal Processing, 2013, 61 (4): 813- 827.
doi: 10.1109/TSP.2012.2225057 |
35 | HUANG T Y, LIU Y M. Compressed sensing for a frequency agile radar with performance guarantees[C]//Proc. of the International Conference on Signal and Information Processing, 2015: 1057-1061. |
36 | MISHRA K, MULLETI S, ELDAR Y. RaSSteR: radom sparse step-frequency radar[EB/OL]. [2020-4-12]. https://arxiv.org/pdf/2004.05720.pdf. |
37 | HUANG T Y, LIU Y M, MENG H D, et al. Randomized step frequency radar with adaptive compressed sensing[C]//Proc. of the IEEE National Radar Conference, 2011: 411-414. |
38 | QUAN Y H , WU Y J , LI Y C , et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12 (3): 348- 352. |
39 | CHEN Q, WU X J, LIU J H. Adaptive compressed sensing based randomized step frequency radar with a weighted PSO[C]// Proc. of the IEEE International Conference on Information & Automation, 2015. |
40 | TAO Y J, ZHANG G, TAO T, et al. Frequency-agile cohe-rent radar target sidelobe suppression based on sparse Bayesian learning[C]//Proc. of the IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 2019. |
41 |
全英汇, 陈侠达, 阮锋, 等. 一种捷变频联合Hough变换的抗密集假目标干扰算法[J]. 电子与信息学报, 2019, 41 (11): 2639- 2645.
doi: 10.11999/JEIT190010 |
QUAN Y H , CHEN X D , RUAN F , et al. An anti-dense false target jamming algorithm based on agile frequency joint hough transform[J]. Journal of Electronics & Information Technology, 2019, 41 (11): 2639- 2645.
doi: 10.11999/JEIT190010 |
|
42 | 董淑仙, 全英汇, 陈侠达, 等. 基于捷变频联合数学形态学的干扰抑制算法[J]. 系统工程与电子技术, 2020, 42 (7): 1491- 1498. |
DONG S X , QUAN Y H , CHEN X D , et al. Interference suppression algorithm based on frequency agility combined with mathematical morphology[J]. Systems Engineering and Electronics, 2020, 42 (7): 1491- 1498. | |
43 | 王勇. 频率捷变雷达抗海杂波性能分析[J]. 战术导弹技术, 2016, (4): 98- 103. |
WANG Y . Sea clutter resistance performance analysis of FAR[J]. Tactical Missile Technology, 2016, (4): 98- 103. | |
44 | WANG J, LIU H, ZHANG W. Design and implementation of modulated stepped frequency radar signal[C]//Proc. of the IET International Radar Conference, 2013. |
45 | LI C, LU H S, ZHANG X F, et al. Design of X-band low phase noise and low spurious frequency source based on HMC778[C]// Proc. of the IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, 2017: 438-442. |
46 | ZHANG X Y, XU J, GUO X Q, et al. A signal generator based on AD9850[C]//Proc. of the Advanced Materials Research, 2013: 1767-1770. |
47 | 龙腾. 宽带雷达[M]. 北京: 国防工业出版社, 2017. |
LONG T . Wideband radar[M]. Beijing: National Defense Industry Press, 2017. | |
48 |
宋立众, 吴群. 一种极化和频率捷变主动雷达信号处理技术[J]. 南京理工大学学报: 自然科学版, 2010, 34 (5): 668- 674.
doi: 10.3969/j.issn.1005-9830.2010.05.018 |
SONG L Z , WU Q . Signal processing technique for active radar with polarization and frequency agility[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2010, 34 (5): 668- 674.
doi: 10.3969/j.issn.1005-9830.2010.05.018 |
|
49 |
史松伟, 沈荣, 杨革文, 等. 同时极化捷变频多载波调相雷达技术研究[J]. 现代雷达, 2011, 33 (6): 8- 12.
doi: 10.3969/j.issn.1004-7859.2011.06.002 |
SHI S W , SHEN R , YANG G W , et al. A study on coexistent polarization frequency aglility multi-carrier complementary phased-coded radar system[J]. Modern Radar, 2011, 33 (6): 8- 12.
doi: 10.3969/j.issn.1004-7859.2011.06.002 |
|
50 | LONG X W , LI K , TIAN J , et al. Ambiguity function analysis of random frequency and PRI agile signals[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 57 (1): 382- 396. |
51 | 姚洪彬. 多参数联合捷变雷达抗干扰研究[D]. 西安: 西安电子科技大学, 2019. |
YAO H B. Research on the anti-interference performance of multiple parameter-agility radar[D]. Xi'an: Xidian University, 2019. | |
52 |
HULEIHEL W , TABRIKIAN J , SHAVIT R . Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Trans.on Signal Processing, 2013, 61 (20): 5075- 5089.
doi: 10.1109/TSP.2013.2269045 |
53 | ZHANG J D, ZHU D Y, ZHANG G. Multi-objective waveform design for cognitive radar[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 580-583. |
54 | XIONG W, WANG X H, ZHANG G. Cognitive waveform design for anti-velocity deception jamming with adaptive initial phases[C]//Proc. of the IEEE Radar Conference, 2016. |
55 |
ZHANG J D , ZHU X H , WANG H Q . Adaptive radar phase-coded waveform design[J]. Electronics letters, 2009, 45 (20): 1052- 1053.
doi: 10.1049/el.2009.1099 |
56 |
ZHANG J D , ZHU D Y , ZHANG G . New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Trans.on Aerospace and Electronic systems, 2013, 49 (2): 1290- 1300.
doi: 10.1109/TAES.2013.6494414 |
57 | YANG Y, WU J, CUI G, et al. Optimized phase-coded waveform design against velocity deception[C]//Proc. of the IEEE Radar Conference, 2015: 400-404. |
58 | CAROTENUTO V , AUBRY A , MAIO A , et al. Assessing agile spectrum management for cognitive radar on measured data[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 36 (6): 20- 32. |
59 | GHELFI P, SCOTTI F, LAGHEZZA F, et al. Photonics gene- ration of phase-modulated RF pulses with carrier frequency agility for software-defined coherent radars[C]//Proc. of the Optical Fiber Communication Conference, 2012. |
60 | LI Y T, JIA X, CHEN Y G, et al. Frequency agility MIMO-SAR imaging and anti-deception jamming performance[C]//Proc. of the URSI General Assembly and Scientific Symposium, 2014. |
[1] | 王帅, 向建军, 彭芳, 唐书娟, 李志军. 基于新最速下降算法的自适应波束形成[J]. 系统工程与电子技术, 2022, 44(7): 2104-2111. |
[2] | 鲁祖坤, 郭海玉, 宋捷, 孙一凡, 李柏渝. 抗干扰型卫星导航接收机的最优前端增益[J]. 系统工程与电子技术, 2022, 44(7): 2270-2275. |
[3] | 刘祥, 黄天耀, 刘一民. 频率捷变雷达的扩展目标检测[J]. 系统工程与电子技术, 2022, 44(6): 1833-1838. |
[4] | 杨志伟, 谢雪新, 李舒婉. 脉宽-调频极性捷变波形相参处理能力分析[J]. 系统工程与电子技术, 2022, 44(4): 1139-1147. |
[5] | 杨宇超, 方明, 赵晨帆, 王玥琪, 方刚. 高速机动目标长时间相参积累和参数估计算法研究[J]. 系统工程与电子技术, 2022, 44(12): 3811-3820. |
[6] | 谭思炜, 唐波, 张林森, 张森. 跳频电磁引信干扰感知技术方案研究[J]. 系统工程与电子技术, 2022, 44(11): 3330-3337. |
[7] | 董淑仙, 全英汇, 沙明辉, 方文, 邢孟道. 捷变频雷达联合脉内频率编码抗间歇采样干扰[J]. 系统工程与电子技术, 2022, 44(11): 3371-3379. |
[8] | 王晓戈, 陈辉, 倪萌钰, 倪柳柳, 李槟槟. 基于相位调制的雷达抗假目标干扰方法[J]. 系统工程与电子技术, 2021, 43(9): 2476-2483. |
[9] | 鲁祖坤, 陈飞强, 孙一凡, 刘哲, 黄龙. 导航信号功率增强对阵列接收机的影响分析[J]. 系统工程与电子技术, 2021, 43(9): 2581-2587. |
[10] | 黄天耀, 李宇涵, 王磊, 刘一民, 王希勤. 相参频率捷变雷达目标稀疏重建性能边界综述[J]. 系统工程与电子技术, 2021, 43(7): 1729-1736. |
[11] | 张瑞, 全英汇, 朱圣棋, 李亚超, 邢孟道. 基于改进OMP算法的稀疏目标微波关联成像方法[J]. 系统工程与电子技术, 2021, 43(7): 1756-1765. |
[12] | 张洋, 位寅生, 于雷. 主瓣多假目标干扰收发联合抑制方法[J]. 系统工程与电子技术, 2021, 43(6): 1486-1496. |
[13] | 方文, 全英汇, 沙明辉, 刘智星, 高霞, 邢孟道. 捷变频联合波形熵的密集假目标干扰抑制算法[J]. 系统工程与电子技术, 2021, 43(6): 1506-1514. |
[14] | 丁逊, 张劲东, 王娜, 王玉莹. 基于相参积累的捷变频雷达系统相位误差估计与稀疏场景重构算法[J]. 系统工程与电子技术, 2021, 43(6): 1515-1523. |
[15] | 江志炜, 黄洋, 吴启晖. 基于核函数强化学习的抗干扰频点分配[J]. 系统工程与电子技术, 2021, 43(6): 1547-1556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||