1 |
顾炼. 基于深度学习的遥感图像建筑物检测及其变化检测研究[D]. 杭州: 浙江工商大学, 2018.
|
|
GU L. Detection for buildings and their changes in remote sensing images based on deep learning[D]. Hangzhou: Zhejiang Gongshang University, 2018.
|
2 |
刘文涛. 基于卷积神经网络的城市区域建筑物自动提取研究[D]. 成都: 电子科技大学, 2018.
|
|
LIU W T. Study on automatic extraction of urban area buildings based on convolution neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
|
3 |
冯丽英. 基于深度学习技术的高分辨率遥感影像建设用地信息提取研究[D]. 浙江: 浙江大学, 2017.
|
|
FENG L Y. Research on construction land information extraction from high resolution images with deep learning technology[D ]. Hangzhou: Zhejiang University, 2017.
|
4 |
LIN J B , JING W P , SONG J P . ESFNet: efficient network for building extraction from high-resolution aerial images[J]. IEEE Access, 2019, 7, 54285- 54294.
doi: 10.1109/ACCESS.2019.2912822
|
5 |
CHEN J , ZHANG D , NANEHKARAN Y A , et al. Detection of rice plant diseases based on deep transfer learning[J]. Journal of the Science of Food and Agriculture, 2020, 100 (7): 3246- 3256.
doi: 10.1002/jsfa.10365
|
6 |
LIU Y B , ZHANG Z X , ZHONG R F , et al. Multilevel building detection framework in remote sensing images based on convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (10): 3688- 3700.
doi: 10.1109/JSTARS.2018.2866284
|
7 |
李大军, 何维龙, 郭丙轩, 等. 基于Mask-RCNN的建筑物目标检测算法[J]. 测绘科学, 2019, 44 (10): 172- 180.
|
|
LI D J , HE W L , GUO B X , et al. Building target detection algorithm based on Mask-RCNN[J]. Science of Surveying and Mapping, 2019, 44 (10): 172- 180.
|
8 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
9 |
AUDEBERT N, SAUX B L, LEFÈVRE, S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks[C]//Proc. of the Asian Conference of Computer Vision, 2016: 180-196.
|
10 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
11 |
伍广明, 陈奇, RYOSUKES, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47 (6): 864- 872.
|
|
WU G M , CHEN Q , RYOSUKE S , et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Journal of Geodesy and Geoinformation Science, 2018, 47 (6): 864- 872.
|
12 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
13 |
ZUO T C, FENG J, CHEN X. HF-FCN: hierarchically fused fully convolutional network for robust building extraction[C]//Proc. of the Asian Conference of Computer Vision, 2016: 291- 302.
|
14 |
于洋, 施国武, 刘斌, 等. 基于全卷积神经网络的无人机影像建筑物提取[J]. 水利水电技术, 2020, 51 (7): 31- 38.
|
|
YU Y , SHI G W , LIU B , et al. Fully convolutional network-based building extraction of image from unmanned aerial vehicle[J]. Water Resources and Hydropower Engineering, 2020, 51 (7): 31- 38.
|
15 |
李强. 基于全卷积神经网络的建筑物提取方法研究[D]. 成都: 西南交通大学, 2016.
|
|
LI Q. Research on building extraction method based on full convolution neural network[D]. Chengdu: Southwest Jiaotong University, 2016.
|
16 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
|
17 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 636-644.
|
18 |
BISCHKE B, HELBER P, FOLZ J, et al. Multi-task learning for segmentation of building footprints with deep neural networks[EB/OL]. [2020-09-18]. https://arxiv.org/abs/1709.05932.
|
19 |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
20 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Confe-rence on Computer Vision and Pattern Recognition, 2017: 936-944.
|
21 |
GAO H, LIU Z, MAATEN L V, et al. Densely connected convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
|
22 |
LI J N , WEI Y C , LIANG X D , et al. Attentive contexts for object detection[J]. IEEE Trans.on Multimedia, 2016, 19 (5): 944- 954.
|
23 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
24 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
25 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translatio n by jointly learning to align and translate[EB/OL]. [2020-09-01]. https://arxiv.org/abs/1409.0473.
|
26 |
LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// Proc. of the Conference on Computer Vision and Pattern Recognition, 2019: 5 10-519.
|
27 |
LIN T, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[EB/OL]. [2020-09-16]. https://arxiv.org/abs/1405.0312.
|
28 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2020-09-04]. https://arxiv.org/abs/1409.1556.
|
29 |
SZEGEDY C, LOFFE S, VANHOUCKE V, et al. Inception-v4 : inception-resNet and the impact of residual connections on learning[C]//Proc. of the 31st AAAI Conference on Artificial Intelligence, 2017: 4278-4284.
|
30 |
SAINING X, ROSS G, PIOTR D, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987 -5995.
|