1 |
MIL-STD-464C. Electromagnetic environmental effects requirements for systems[S]. USA: Department of the Air Force, 2010.
|
2 |
GJB 1389A—2005. 系统电磁兼容性要求[S]. 中国: 中国人民解放军总装备部, 2005.
|
|
GJB 1389A—2005. Electromagnetic compatibility requirements for systems[S]. China: Chinese People Liberation Army General Armament Department, 2005.
|
3 |
杨茂松, 孙永卫, 潘晓东, 等. 双绞线BCI等效替代强场电磁辐射实验研究[J]. 微波学报, 2018, 34 (6): 72- 77.
|
|
YANG M S , SUN Y W , PAN X D , et al. Testing technology of using twisted pair cable BCI as substitution for high field continuous wave EM radiation[J]. Journal of Microwaves, 2018, 34 (6): 72- 77.
|
4 |
潘晓东, 魏光辉, 卢新福, 等. 差模定向注入等效替代强电磁脉冲辐射效应实验方法[J]. 电波科学学报, 2017, 32 (2): 151- 160.
|
|
PAN X D , WEI G H , LU X F , et al. Test method of using differential mode injection as a substitute for high intensity electromagnetic pulse radiation[J]. Chinese Journal of Radio Science, 2017, 32 (2): 151- 160.
|
5 |
卢新福, 魏光辉, 潘晓东, 等. 端口非线性条件下双端差模注入法可行性研究[J]. 高电压技术, 2015, (12): 4213- 4219.
|
|
LU X F , WEI G H , PAN X D , et al. Study on feasibility of double differential mode current injection method under condition of terminal nonlinearity[J]. High Voltage Engineering, 2015, (12): 4213- 4219.
|
6 |
潘晓东, 魏光辉, 卢新福, 等. 电磁注入等效替代辐照理论模型及实现技术[J]. 高电压技术, 2012, (9): 2293- 2301.
|
|
PAN X D , WEI G H , LU X F , et al. Theoretical model and implementation technique of using injection as a substitute for radiation[J]. High Voltage Engineering, 2012, (9): 2293- 2301.
|
7 |
HE K , YU D J , GUO B S , et al. An equivalent dynamic test system for immunity characterization of the UAV positioning module using bulk current injection method[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2 (4): 161- 164.
|
8 |
HO C Y , CHEN K S , HORNG T S . Estimating radiated emission reduction from printed circuit board using vector network analyzer with a bulk current injection probe[J]. Progress in Electromagnetics Research, 2013, 135 (1): 1- 16.
|
9 |
PAUL C R . Decoupling the multiconductor transmission line equations[J]. IEEE Trans.on Microwave Theory & Techniques, 2002, 44 (8): 1429- 1440.
|
10 |
CROVETTI P S , FIORI F . A critical assessment of the closed-loop bulk current injection immunity test performed in compliance with ISO 11452-4[J]. IEEE Trans.on Instrumentation and Measurement, 2011, 60 (4): 1291- 1297.
doi: 10.1109/TIM.2010.2084870
|
11 |
KWAK S K , NAH W , KIM S Y . Electromagnetic susceptibility analysis of I/O buffers using the bulk current injection method[J]. Journal of Semiconductor Technology & Science, 2013, 13 (2): 114- 126.
|
12 |
MASHRIKI I M , RAZAVI S M J , ARMAKI S H M . Analyzing the resonance resultant from the capacitive effects in bulk current injection probe[J]. Radio Engineering, 2020, 29 (1): 109- 116.
|
13 |
SPADACINI G, GRASSI F, PIGNARI S A, et al. Experimental proof of concept for the correlation of bulk current injection and radiated susceptibility tests for aerospace equipment up to 1 GHz[C]//Proc. of the International Symposium on Electromagnetic Compatibility, 2018.
|
14 |
NANDYALA C, LITZ H, HAFNET B, et al. Efficient use of circuit & 3D-EM simulation to optimize the automotive bulk current injection (BCI) performance of ultrasonic sensors[C]// Proc. of the International Symposium on Electromagnetic Compatibility-EMC, 2020.
|
15 |
LI S F , ZHU T , CHEN C L , et al. W layer thickness dependence of the spin-orbit effective fields in NiFe/W bilayers[J]. Journal of Applied Physics, 2021, 129 (6): 063903.
doi: 10.1063/5.0038236
|
16 |
POSPISIL J , GUERRERO A , ZMESKAL O , et al. Reversible formation of gold halides in single-crystal hybrid-perovskite/Au interface upon biasing and effect on electronic carrier injection[J]. Advanced Functional Materials, 2019, 29 (32): 1900881.
doi: 10.1002/adfm.201900881
|
17 |
MASHRIKI I M , RAZAVI S M J , ARMAKI S H M . Electromagnetic and circuit modelling of a modified design of bulk current injection probe calibration jig[J]. IET Science Measurement Technology, 2020, 14 (9): 715- 721.
doi: 10.1049/iet-smt.2019.0447
|
18 |
TSUKADA A, OKAMOTO K, OKUGAWA Y, et al. System-level response of ethernet linkage to bulk current injection into cables[C]//Proc. of the International Symposium on Electromagnetic Compatibility, 2020.
|
19 |
ZHANG Y X, YAN Z W, WANG J W, et al. The research of bulk current injection probe used for ICs electromagnetic immunity measurement[C]//Proc. of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, 2019.
|
20 |
AIELLO O . Hall-effect current sensors susceptibility to EMI: experimental study[J]. Electronics, 2019, 8 (11): 1310.
doi: 10.3390/electronics8111310
|
21 |
LIU X , GRASSI F , SPADACINI G , et al. Behavioural modelling of complex magnetic permeability with high-order debye model and equivalent circuits[J]. IEEE Trans.on Electromagnetic Compatibi-lity, 2020,
doi: 10.1109/TEMC.2020.3016376
|
22 |
WANG P , LIN K M , ZHANG X , et al. An online estimation method for both stator inductance and rotor flux linkage of SPMSM without dead-time influence[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021,
doi: 10.1109/JESTPE.2021.3057718
|
23 |
ZHU L, JING S. MATLAB-based multi-parameter optimization of bulk current injection probe[C]//Proc. of the IEEE International Conference on Computation, Communication and Engineering, 2019.
|
24 |
SUN C , YANG H , JALIL M B A . Ferrimagnetic resonance induced by the spin Hall effect[J]. Physical Review B, 2020, 102 (13): 134420.
doi: 10.1103/PhysRevB.102.134420
|
25 |
NAYAK B P , RAMESH S , RAJEEV S , et al. Model-based system-level EMI/EMC simulation for BCI pass-fail prediction[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2 (2): 28- 33.
|
26 |
DUARATE J P , CHOI S J , MOON D I , et al. Simple analytical bulk current model for long-channel double-gate junction less transistors[J]. IEEE Electron Device Letters, 2011, 32 (6): 704- 706.
doi: 10.1109/LED.2011.2127441
|
27 |
GRASSI F , SPADACINI G , MARLIANI F , et al. Use of double bulk current injection for susceptibility testing of avionics[J]. IEEE Trans.on Electromagnetic Compatibility, 2008, 50 (3): 524- 535.
doi: 10.1109/TEMC.2008.926810
|
28 |
MARLIANI F, SPADACINI G, PIGNARI S A. Double bulk current injection test with amplitude and phase control[C]//Proc. of the 18th International Zurich Symposium on Electromagnetic Compatibility, 2007.
|
29 |
CUVELIER M, RIOULT J, KLINGLER M, et al. Double bulk current injection: a new harness setup to correlate immunity test methods[C]//Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2003.
|
30 |
GRASSI F , SPADACINI G , PIGNARI S A . The concept of weak imbalance and its role in the emissions and immunity of differential lines[J]. IEEE Trans.on Electromagnetic Compatibility, 2013, 55 (6): 1346- 1349.
doi: 10.1109/TEMC.2013.2261302
|
31 |
GRASSI F , PIGNARI S A . Bulk current injection in twisted wire pairs with not perfectly balanced terminations[J]. IEEE Trans.on Electromagnetic Compatibility, 2013, 55 (6): 1293- 1301.
doi: 10.1109/TEMC.2013.2255295
|
32 |
GRASSI F. Accurate modelling of ferrite-core effects in probes for bulk current injection[C]//Proc. of the IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, 2010.
|
33 |
PIGNARI S A , CANAVERO F G . Theoretical assessment of bulk current injection versus radiation[J]. IEEE Trans.on Electromagnetic Compatibility, 1996, 38 (3): 469- 477.
doi: 10.1109/15.536077
|
34 |
GRASSI F , MARLIANI F , PIGNARI S . A circuit modelling of injection probes for bulk current injection[J]. IEEE Trans.on Electromagnetic Compatibility, 2007, 49 (3): 563- 576.
doi: 10.1109/TEMC.2007.902385
|
35 |
GRASSI F , PIGNARI S A . Immunity to conducted noise of data transmission along DC power lines involving twisted-wire pairs above ground[J]. IEEE Trans.on Electromagnetic Compatibility, 2013, 55 (1): 195- 207.
doi: 10.1109/TEMC.2012.2208117
|
36 |
FREDERICK M , TESCHET M V I , TORBJORN K . EMC analysis methods and computational models[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2009.
|