1 |
马伟明, 鲁军勇, 李湘平. 电磁发射超高速一体化弹丸[J]. 国防科技大学学报, 2019, 41 (4): 1- 10.
|
|
MA W M , LU J Y , LI X P . Electromagnetic launch of ultra-high speed integrated projectile[J]. Journal of the University of National Defense Science and Technology, 2019, 41 (4): 1- 10.
|
2 |
MCNAB I R . Large-scale pulsed power opportunities and challe nges[J]. IEEE Trans.on Plasma Science, 2014, 42 (5): 1118- 1126.
doi: 10.1109/TPS.2014.2303884
|
3 |
VERTELIS V , VINCENT G , SCHNEIDER M , et al. Magnetic field expulsion from a conducting projectile in a pulsed serial aug mented railgun[J]. IEEE Trans.on Plasma Science, 2020, 48 (3): 727- 732.
doi: 10.1109/TPS.2020.2970764
|
4 |
LIN Q H , LI B M . Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model[J]. Defence Technology, 2016, 12 (2): 101- 105.
doi: 10.1016/j.dt.2015.12.008
|
5 |
DOERRY N , AMY J , KROLICK C . History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. Navy[J]. Proceedings of the IEEE, 2015, 103 (12): 2243- 2251.
doi: 10.1109/JPROC.2015.2494159
|
6 |
LI B M , LI Q H . Analysis and discussion on launching mechanism and tactical electromagnetic railgun technology[J]. Defence Technology, 2018, 14 (5): 484- 495.
doi: 10.1016/j.dt.2018.07.011
|
7 |
GHARIB L , KESHTKAR A . Electromagnetic interference of railgun and its effect on surrounding electronics[J]. IEEE Trans.on Plasma Science, 2019, 47 (8): 4196- 4202.
doi: 10.1109/TPS.2019.2923061
|
8 |
FAIR H D . Progress in electromagnetic launch science and technology[J]. IEEE Trans.on Magnetics, 2007, 43 (1): 93- 98.
|
9 |
YANG Z Y , FENG G , XUE X P , et al. An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles[J]. IEEE Trans.on Plasma Science, 2017, 45 (7): 1095- 1100.
doi: 10.1109/TPS.2016.2646377
|
10 |
GUTIERREZ H , MEINKE R , FERNANDO T , et al. Non-contact DC electromagnetic propulsion by multipole transversal field: numerical and experimental validation[J]. IEEE Trans.on Magnetics, 2016, 52 (8): 8300510.
|
11 |
XUE X P , SHU T , YANG Z Y , et al. A new electromagnetic launcher by sextupole rails: electromagnetic propulsion and shielding numerical validation[J]. IEEE Trans.on Plasma Science, 2017, 45 (9): 2541- 2545.
doi: 10.1109/TPS.2017.2728688
|
12 |
BECHERINI G , DI F S , CIOLINI R , et al. Shielding of high magnetic fields[J]. IEEE Trans.on Magnetics, 2009, 45 (1): 604- 609.
doi: 10.1109/TMAG.2008.2008537
|
13 |
MRSNIK M , SLAVIC J , BOLTEŽAR M , et al. Vibration fatigue using modal decomposition[J]. Mechanical Systems and Signal Processing, 2018, 98 (1): 548- 556.
|
14 |
WATT T , STEFANI F , CRAWFORD M , et al. Investigation of damage to solid-armature railguns at startup[J]. IEEE Trans.on Magnetics, 2007, 43 (1): 214- 218.
doi: 10.1109/TMAG.2006.887432
|
15 |
PROULX G A . Railgun with steel barrel sections and thermal management system[J]. IEEE Trans.on Plasma Science, 2015, 43 (5): 1642- 1646.
|
16 |
MA W M , LU J Y . Thinking and study of electromagnetic launch technology[J]. IEEE Trans.on Plasma Science, 2017, 45 (7): 1071- 1077.
doi: 10.1109/TPS.2017.2705979
|
17 |
YANG S , CHAGAS M B , ORDONEZ J C . Thermal management of a notional all-electric ship electromagnetic launcher- sciencedirect[J]. Energy Conversion and Management, 2018, 157 (1): 339- 350.
|
18 |
LIN Q H , LI B M . Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun[J]. Defence Technology, 2020, 16 (2): 78- 83.
|
19 |
SIOPIS M J , NEU R W . Materials selection exercise for electromagnetic launcher rails[J]. IEEE Trans.on Magnetics, 2013, 49 (8): 4831- 4838.
|
20 |
ZHANG Z Y , SUN L X , TAO N R . Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy[J]. Journal of Materials Science & Technology, 2020, 48 (13): 18- 22.
|
21 |
ZHANG H H , LI S , GAO X , et al. Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns[J]. IEEE Trans.on Plasma Science, 2020, 48 (12): 4342- 4349.
|
22 |
XIE H B , YANG H Y , YU J , et al. Research progress on advanced rail materials for electromagnetic railgun technology[J]. Defence Technology, 2021, 17 (2): 429- 439.
|
23 |
CHEN J W , LYV Q A , XING Y C , et al. Preparation process and launching test of armature coated with Sn alloy for electromagnetic railgun[J]. Journal of Magnetic Materials and Devices, 2019, 50 (5): 26- 30.
|
24 |
曹海要, 战再吉. 铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J]. 高压物理学报, 2016, 30 (4): 317- 322.
|
|
CAO H Y , ZHAN Z J . Experimental study on ablation characteristics of electromagnetic orbit of copper/diamond composite[J]. Journal of High Voltage Physics, 2016, 30 (4): 317- 322.
|
25 |
黄伟, 杨黎明, 史戈宁, 等. 电磁发射条件下CuCrZr合金材料轨道损伤行为研究[J]. 兵工学报, 2020, 41 (5): 858- 864.
|
|
HUANG W , YANG L M , SHI G N , et al. Study on orbital damage behavior of CuCrZr alloy under electromagnetic emis sion conditions[J]. Journal of Military Engineering, 2020, 41 (5): 858- 864.
|
26 |
田振国, 安雪云, 杨艳, 等. 轨道炮发射状态下复合轨道的温度场分析[J]. 燕山大学学报, 2019, 43 (3): 271- 277.
|
|
TIAN Z G , AN X Y , YANG Y , et al. Analysis of the tempera -ture field of the composite track under the launching condition of gun[J]. Journal of Yanshan University, 2019, 43 (3): 271- 277.
|