1 |
MARZETTA T L , NGO H Q . Fundamentals of massive MIMO[M]. Cambridge: Cambridge University Press, 2016.
|
2 |
BASAR E , DI RENZO M , DE R J , et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7, 116753- 116773.
doi: 10.1109/ACCESS.2019.2935192
|
3 |
DAI L L , WANG B C , WANG M , et al. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8, 45913- 45923.
doi: 10.1109/ACCESS.2020.2977772
|
4 |
TANG W , CHEN M Z , DAI J Y , et al. Wireless communications with programmable meta surface: new paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 2020, 27 (2): 180- 187.
doi: 10.1109/MWC.001.1900308
|
5 |
TANG W , LI X , DAI J Y , et al. Wireless communications with programmable met surface: transceiver design and experimental results[J]. China Communications, 2019, 16 (5): 46- 61.
doi: 10.23919/j.cc.2019.05.004
|
6 |
NGUYEN S L H, GHRAYEB A. Compressive sensing-based channel estimation for massive multiuser MIMO systems[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2013: 2890-2895.
|
7 |
QI C , WU L . Uplink channel estimation for massive MIMO systems exploring joint channel sparsity[J]. Electronics Letters, 2014, 50 (23): 1770- 1772.
doi: 10.1049/el.2014.2769
|
8 |
RAO X , LAU V K N . Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems[J]. IEEE Trans.on Signal Processing, 2014, 62 (12): 3261- 3271.
doi: 10.1109/TSP.2014.2324991
|
9 |
GAO Z , DAI L L , WANG Z , et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Trans.on Signal Processing, 2015, 63 (23): 6169- 6183.
doi: 10.1109/TSP.2015.2463260
|
10 |
XIU Y , WANG W Y , ZHANG Z P . A message passing approach to acquire mmwave channel state information based on out-of-band data[J]. IEEE Access, 2018, 6, 45665- 45680.
doi: 10.1109/ACCESS.2018.2855688
|
11 |
NADEEM Q U A , ALWAZANI H , KAMMOUN A , et al. Intelligent reflecting surface assisted multi-user MISO communication: channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society, 2020, 1, 661- 680.
doi: 10.1109/OJCOMS.2020.2992791
|
12 |
JENSEN T L, CARVALHOD E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 5000-5004.
|
13 |
HE Z Q , YUAN X . Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9 (2): 210- 214.
doi: 10.1109/LWC.2019.2948632
|
14 |
HU C, DAI L L. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications[EB/OL]. [2021-09-26]. https://ieeexplore.ieee.org/document/9400843.
|
15 |
CHEN J, LIANG Y C, CHENG H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[EB/OL]. [2021-03-26]. https://arxiv.org/pdf/1912.03619.pdf.
|
16 |
WANG P L , FANG J , DUAN H P , et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27, 905- 909.
doi: 10.1109/LSP.2020.2998357
|
17 |
WEI L, HUANG C C, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]//Proc. of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020.
|
18 |
WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications: part Ⅱ—an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25 (5): 1403- 1407.
doi: 10.1109/LCOMM.2021.3052787
|
19 |
WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications: part I—fundamentals, solutions, and future opportunities[J]. IEEE Communications Letters, 2021, 25 (5): 1398- 1402.
doi: 10.1109/LCOMM.2021.3052822
|
20 |
XIONG Y Z , ZHANG Z P , WEI N , et al. Performance analysis of uplink massive MIMO systems with variable-resolution ADCs using MMSE and MRC detection[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30 (5): e3549.
doi: 10.1002/ett.3549
|
21 |
ZHANG J Y , DAI L L , SUN S Y , et al. On the spectral efficiency of massive MIMO systems with low-resolution ADCs[J]. IEEE Communications Letters, 2016, 20 (5): 842- 845.
doi: 10.1109/LCOMM.2016.2535132
|
22 |
WANG S C , LI Y Z , WANG J . Multiuser detection in massive spatial modulation MIMO with low-resolution ADCs[J]. IEEE Trans.on Wireless Communications, 2014, 14 (4): 2156- 2168.
|
23 |
JACQUES L, DEGRAUX K, DE V C. Quantized iterative hard thresholding: bridging 1-bit and high-resolution quantized compressed sensing[EB/OL]. [2021-03-26]. http://arxiv.org/pdf/1305.1786.pdf
|
24 |
ZYMNIS A , BOYD S , CANDES E . Compressed sensing with quantized measurements[J]. IEEE Signal Processing Letters, 2009, 17 (2): 149- 152.
|
25 |
XIONG Y Z , ZHANG Z P , WEI N , et al. A bilinear GAMP-based receiver for quantized mmwave massive MIMO using expectation maximization[J]. IEEE Communications Letters, 2018, 23 (1): 84- 87.
|
26 |
WEN C K , WANG C J , JIN S , et al. Bayes-optimal joint channel-and-data estimation for massive MIMO with low-precision ADCs[J]. IEEE Trans.on Signal Processing, 2015, 64 (10): 2541- 2556.
|
27 |
MO J , SCHNITER P , HEATH R W . Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs[J]. IEEE Trans.on Signal Processing, 2017, 66 (5): 1141- 1154.
|
28 |
ZHI K D , PAN C , REN H , et al. Uplink achievable rate of intelligent reflecting surface-aided millimeter-wave communications with low-resolution ADC and phase noise[J]. IEEE Wireless Communications Letters, 2020,
|
29 |
GRAY R M , NEUHOFF D L . Quantization[J]. IEEE Trans.on Information Theory, 1998, 44 (6): 2325- 2383.
doi: 10.1109/18.720541
|
30 |
LIN X C , WU S , JIANG C X , et al. Estimation of broadband multiuser millimeter wave massive MIMO-OFDM channels by exploiting their sparse structure[J]. IEEE Trans.on Wireless Communications, 2018, 17 (6): 3959- 3973.
doi: 10.1109/TWC.2018.2818142
|