1 |
HAFTING T , FYHN M , MOLDEN S , et al. Microsruct-ture of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436 (11): 801- 806.
|
2 |
OKEEFE J , DOSTROVSKY J . The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34 (1): 171- 175.
doi: 10.1016/0006-8993(71)90358-1
|
3 |
TAUBE J , MULLER R , RANCK J . Head-direction cells recorded from the postsubiculum in freely moving rats. I. description and quantitative analysis[J]. The Journal of Neuroence, 1990, 10 (2): 420- 435.
|
4 |
EMILIO K , JAMES E . Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523 (7561): 419- 424.
doi: 10.1038/nature14622
|
5 |
SOLSTAD T , BOCCARA C N . Representation of geometric borders in the entorhinal cortex[J]. Science, 2008, 322 (5909): 1865- 1868.
doi: 10.1126/science.1166466
|
6 |
吴德伟, 何晶, 韩昆, 等. 无人作战平台认知导航及其类脑实现思想[J]. 空军工程大学学报(自然科学版), 2018, 19 (6): 37- 42.
|
|
WU D W , HE J , HAN K , et al. Cognitive navigation and its thought of brain-inspired realization in unmanned combat platform[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19 (6): 37- 42.
|
7 |
FYHN M , MOLDEN S , WITTER M P , et al. Spatial representation in the entorhinal cortex[J]. Science, 2004, 305 (5688): 1258- 1264.
doi: 10.1126/science.1099901
|
8 |
TANG H J , YAN R , TAN K C , et al. Cognitive navigation by neuro-inspired localization, mapping, and episodic memory[J]. IEEE Trans.on Cognitive & Developmental Systems, 2017, (2): 30- 37.
|
9 |
斯白露, 罗壹凡. 空间记忆与类脑导航研究进展[J]. 人工智能, 2020, (1): 16- 31.
|
|
SI B L , LUO Y F . Research progress of spatial memory and brain-like navigation[J]. Artificial Intelligence, 2020, (1): 16- 31.
|
10 |
吴德伟. 导航原理[M]. 北京: 电子工业出版社, 2015.
|
|
WU D W . The principle of navigation[M]. Beijing: Publishing House of Electronics Industry, 2015.
|
11 |
赵辰豪, 吴德伟, 何晶, 等. 基于改进Q学习算法的导航认知图构建[J]. 空军工程大学学报(自然科学版), 2020, 21 (2): 53- 60.
doi: 10.3969/j.issn.1009-3516.2020.02.008
|
|
ZHAO C H , WU D W , HE J , et al. Navigation cognitive map construction based on improved q-learning algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21 (2): 53- 60.
doi: 10.3969/j.issn.1009-3516.2020.02.008
|
12 |
GIOCOMO , LISA M , ZILLI G , et al. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing[J]. Science, 2007, 315 (5819): 1719- 1722.
doi: 10.1126/science.1139207
|
13 |
杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报, 2020, 41 (1): 30- 44.
|
|
YANG C , LIU J Y , XIONG Z , et al. Brain-inspired navigation technology integrating perception and action decision: a review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (1): 30- 44.
|
14 |
YUAN M, TIAN B, SHIM V A, et al. An entorhinal-hippo-campal model for simultaneous cognitive map building[C]//Proc. of the 29th AAAI Conference on Artificial Intelligence, 2015: 586-592.
|
15 |
EDVARDSEN V. Long-range navigation by path integration and decoding of grid cells in neural network[C]//Proc. of the International Joint Conference on Neural Network, 2017: 4348-4355.
|
16 |
LU H, XIAO J, ZHANG L, et al. Biologically inspired visual odometry based on the computional model of grid cells for mobile robots[C]//Proc. of the IEEE International Conference on Robotics & Biomimetics, 2017: 595-601.
|
17 |
ISLAM T, FUKUZAKI R. A model of path integration and navigation based on head direction cells in entorhinal cortex[C]//Proc. of the Berlin Heidelberg Springer, 2010: 82-90.
|
18 |
WALTERS D M , STRINGER S M . Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants[J]. Biological Cyberne-tics, 2010, 103 (1): 21- 41.
doi: 10.1007/s00422-009-0355-0
|
19 |
KUBIE J L , FENTON A . Heading-vector navigation based on head-direction cells and path integration[J]. Hippocampus, 2009, 19 (5): 456- 479.
doi: 10.1002/hipo.20532
|
20 |
ZHOU Y , DEWEI W U . Biologically inspired model of path integration based on head direction cells and grid cells[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17 (5): 435- 448.
|
21 |
PAGE H J I , WALTERS D , STRINGER S M . A speed-accurate self-sustaining head direction cell path integration model without recurrent excitation[J]. Network Computation in Neural Systems, 2018, 29 (4): 37- 69.
|
22 |
BURAK Y , FIETE I R . Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computer, 2009, 5, e1000291.
doi: 10.1371/journal.pcbi.1000291
|