系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2940-2953.doi: 10.12305/j.issn.1001-506X.2021.10.29

• 制导、导航与控制 • 上一篇    下一篇

基于双目视觉的空中加油锥套定位与对接控制

张易明*, 艾剑良   

  1. 复旦大学航空航天系, 上海 200433
  • 收稿日期:2020-12-29 出版日期:2021-10-01 发布日期:2021-11-04
  • 通讯作者: 张易明
  • 作者简介:张易明(1987—), 男, 博士研究生, 主要研究方向为飞行动力学与飞行控制及飞行仿真技术|艾剑良(1965—), 男, 教授, 博士, 主要研究方向为飞行动力学与飞行控制及飞行仿真技术

Positioning of aerial refueling drogue and docking control based on binocular vision

Yiming ZHANG*, Jianliang AI   

  1. Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
  • Received:2020-12-29 Online:2021-10-01 Published:2021-11-04
  • Contact: Yiming ZHANG

摘要:

针对插头-锥套式自主空中加油对接过程中实时获取加油锥套空间位置及控制导引的问题, 提出了一种结合深度学习(改进的YOLOv4-Tiny)和双目视觉匹配的快速定位方法。通过插入空间金字塔池化(spatial pyramid pooling, SPP)模块和修改部分卷积层结构, 改进后的YOLOv4-Tiny对416×416的输入检测速度达到182 Hz。与原网络相比, 体积减小20.47%, 在测试集上的平均交并比提高5%;制作了加油锥套的缩比模型进行开展视觉定位实验, 实验中平均深度预测误差小于5%, 空间位置预测符合预期。通过引入一种建立在Yolo预测基础上的快速边缘拟合方法, 获得锥套的椭圆形特征。此外, 建立了一种基于投影算子的模型参考自适应控制(model reference adaptive control, MRAC)增广控制器, 在受油机机体坐标系下跟踪锥套目标。仿真结果显示, 受油机在锥套平面中的平均跟踪误差小于加油锥套的捕获半径, 满足对接要求。

关键词: 空中加油, 深度学习, 双目视觉, 目标检测, 相机标定, 自适应控制

Abstract:

To solve the problem of positioning the refueling drogue during autonomous docking process in probe-drogue aerial refueling, a fast positioning scheme combining deep-learning (an improved version of YOLOv4_Tiny) and binocular vision is proposed, By inserting spatial pyramid pooling (SPP) module and modifying certain convolutional layers, the improved YOLOv4-tiny runs at 182 Hz on 416×416 inputs. The improved net is 20.47% smaller in size and 5% higher in average IoU on test set compared with the original net. Experiments of positioning are carried out with scaled model of refueling drogue. Average error of depth prediction is less than 5% and results of spatial prediction are in line with expectations. A rapid edge fitting scheme based on Yolo prediction is introduced to obtain elliptic feature of refueling drogue. Meanwhile, an augmented MRAC controller based on projection operator is established driving the receiver aircraft to track the refueling drogue. Simulation results show that the receiver aircraft tracks the drogue with an average error smaller than the capturing radius thus docking requirement is fulfilled.

Key words: aerial-refueling, deep learning, binocular vision, object detection, camera calibration, adaptive control

中图分类号: