系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2918-2930.doi: 10.12305/j.issn.1001-506X.2021.10.27
万兵*, 韩维, 梁勇, 苏析超
收稿日期:
2020-12-17
出版日期:
2021-10-01
发布日期:
2021-11-04
通讯作者:
万兵
作者简介:
万兵(1985—), 男, 讲师, 博士研究生, 主要研究方向为航空保障工程、飞行器制导控制与动力学|韩维(1970—), 男, 教授, 博士, 主要研究方向为动力学与控制、航空保障工程|梁勇(1976—), 男, 副教授, 博士, 主要研究方向为探测制导与控制、航空技术保障|苏析超(1990—), 男, 讲师, 博士, 主要研究方向为航空保障工程
基金资助:
Bing WAN*, Wei HAN, Yong LIANG, Xichao SU
Received:
2020-12-17
Online:
2021-10-01
Published:
2021-11-04
Contact:
Bing WAN
摘要:
由于复飞逃逸、飞行故障等因素随机发生, 传统静态调度方法难以有效解决动态随机调度问题。对此,提出一种基于飞机优先序指标函数的蒙特卡罗模拟-差分进化搜索的实时调度算法。在离线模拟回收环境下,由算法完成基于随机模型的指标函数系数优化,后由该指标函数实现对机队优先序的实时评估排序,进而完成回收在线动态调度。仿真结果表明所提算法能有效解决回收调度问题。在相同机队初始输入下, 目标值呈现较好统计特性, 其期望值能够快速收敛到一定范围, 且无复飞情况下着舰时间窗目标呈显著正态性; 不同回收机队输入对指标系数最优值的散布较小, 表明指标函数评估优先序具有较好的通用性和有效性; 模拟回收调度发现, 着舰成功率的提高将显著降低机队复飞次数, 提高回收效率。
中图分类号:
万兵, 韩维, 梁勇, 苏析超. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43(10): 2918-2930.
Bing WAN, Wei HAN, Yong LIANG, Xichao SU. Research on optimization of carrier-based aircraft fleetrecovery scheduling based on index function[J]. Systems Engineering and Electronics, 2021, 43(10): 2918-2930.
表2
着舰成功率0.9机队回收的模拟调度实验"
状态 | 频次 | 目标均值 | |||||
次数 | 占比 | 总目标 | 时间窗/mm | 总等待/mm | 总余油/% | ||
无复飞情况 | 68 | 0.23 | 26.30 | 29.56 | 57.00 | 2.79 | |
1次复飞 | 91 | 0.30 | 29.73 | 30.81 | 65.94 | 2.73 | |
2次复飞 | 86 | 0.28 | 35.25 | 33.15 | 79.83 | 2.64 | |
3次复飞 | 34 | 0.11 | 37.01 | 32.80 | 85.99 | 2.59 | |
4次复飞 | 14 | 0.05 | 42.56 | 33.47 | 102.65 | 2.48 | |
5次复飞 | 5 | 0.02 | 51.42 | 38.94 | 122.18 | 2.35 | |
6次复飞 | 2 | 0.01 | 50.11 | 34.21 | 125.54 | 2.33 |
表3
随机模拟方案生成"
参数 | 无复飞 | 1架飞机复飞 | 2架飞机复飞 | 3架飞机复飞 |
总目标Z | 16.08 | 26.49 | 29.27 | 37.55 |
Z1 | 24.55 | 27.96 | 35.28 | 33.47 |
Z2 | 32.35 | 60.14 | 57.35 | 86.67 |
Z3 | 2.98 | 2.79 | 2.82 | 2.61 |
着舰顺序(含复飞) | - | 1-9-7-11-6-5-9-2-10-14-8-3-12-13-4 | 1-9-7-11-14-2-10-6-5-8-2-3-13-12-4-4 | 1-9-7-11-14-1-10-6-5-2-8-5-12-3-13-4-13 |
成功着舰顺序 | 1-9-7-11-14-2-8-6-10-5-13-3-12-4 | 1-7-11-6-5-9-2-10-14-8-3-12-13-4 | 1-9-7-11-14-10-6-5-8-2-3-13-12-4 | 9-7-11-14-1-10-6-2-8-5-12-3-4-13 |
盘旋圈数 | 0-0-0-1-1-0-0-2-2-3-1-0-0-1 | 0-0-1-1-1-1-1-2-3-2-0-0-4-2 | 0-0-0-1-1-1-2-2-1-1-0-3-1-3 | 0-0-1-1-1-1-2-2-2-3-0-2-3-6 |
复飞飞机 | - | 9 | 2、4 | 1、2、13 |
复飞次数 | - | 1 | 2 | 3 |
总盘旋圈数 | 11 | 18 | 16 | 24 |
1 | 姜龙光. 国外航母航空保障系统[M]. 北京: 国防工业出版社, 2016. |
JIANG L G . Foreign aircraft carrier aviation support system[M]. Beijing: National Defense Industry Press, 2016. | |
2 | DASTIDAR R G, FRAZZOLI E. A queueing network based approach to distributed aircraft carrier deck scheduling[C]//Proc. of the AIAA Infotech at Aerospace Conference, 2011. |
3 | RYAN J C. Evaluating safety protocols for manned unmanned environments through agent based simulation[D]. Massachusetts: Massachusetts Institute of Technology, 2014. |
4 |
RYAN J C , BANERJEE A G , CUMMINGS M L , et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Trans.on Cybernetics, 2014, 44 (6): 761- 773.
doi: 10.1109/TCYB.2013.2271694 |
5 |
RYAN J C , CUMMINGS M L . A systems analysis of the introduction of unmanned aircraft into aircraft carrier operations[J]. IEEE Trans.on Hum-Mach Systems, 2016, 46 (2): 209- 220.
doi: 10.1109/THMS.2014.2376355 |
6 | 刘翱, 刘克. 舰载机保障作业调度问题研究进展[J]. 系统工程理论与实践, 2017, 37 (1): 49- 60. |
LIU A , LIU K . Advances in carrier-based aircraft deck operation scheduling[J]. Systems Engineering Theory & Practice, 2017, 37 (1): 49- 60. | |
7 |
WANG X W , LIU J . A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3039- 3057.
doi: 10.1016/j.cja.2020.06.020 |
8 |
苏析超, 韩维, 萧卫, 等. 基于Memetic算法的舰载机舰面一站式保障调度[J]. 系统工程与电子技术, 2016, 38 (10): 2303- 2309.
doi: 10.3969/j.issn.1001-506X.2016.10.12 |
SU X C , HAN W , XIAO W , et al. Pit-stop support scheduling on deck of carrier plane based on Memetic algorithm[J]. Systems Engineering and Electronics, 2016, 38 (10): 2303- 2309.
doi: 10.3969/j.issn.1001-506X.2016.10.12 |
|
9 |
CAO Y , RATHINAM S , SUN D F . Greedy-heuristic-aided mixed-integer linear programming approach for arrival scheduling[J]. Journal of Aerospace Information Systems, 2013, 10 (7): 323- 336.
doi: 10.2514/1.I010030 |
10 | ZHANG J F , ZHAO P . A new metaheuristic approach for aircraft landing problem[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37 (2): 197- 208. |
11 |
ZHANG J F , ZHAO P , ZHANG Y , et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82, 101734.
doi: 10.1016/j.jairtraman.2019.101734 |
12 | ZHANG J F , ZHENG Z , GE T . Sequencing approach of arrival aircrafts based on composite dispatching rules[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 141- 150. |
13 |
刘洪, 杨红雨, 刘宇, 等. 基于单一移动平台的飞机进近排序模型研究[J]. 四川大学学报, 2014, 51 (6): 1149- 1155.
doi: 10.3969/j.issn.0490-6756.2014.06.009 |
LIU H , YANG H Y , LIU Y , et al. Study of approach aircraft sequencing model based on single mobile landing platform[J]. Journal of Sichuan University, 2014, 51 (6): 1149- 1155.
doi: 10.3969/j.issn.0490-6756.2014.06.009 |
|
14 |
WU Y , SUN L G , QU X J . A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54, 72- 87.
doi: 10.1016/j.ast.2016.04.007 |
15 | CUI J P, WU Y, SU X C, et al. A task allocation model for a team of aircraft launching on the carrier[J]. Mathematical Problems in Engineering, 2018(2018): 7920806/2018/7920806. |
16 |
KWASIBORSKA A . Sequencing landing aircraft process to minimize schedule length[J]. Transportation Research Procedia, 2017, 28, 111- 116.
doi: 10.1016/j.trpro.2017.12.175 |
17 |
SHI W , JIANG S , LIANG X , et al. A heuristic algorithm for solving the aircraft landing scheduling problem with a landing sequence division[J]. IEICE Trans.on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102.A (8): 966- 973.
doi: 10.1587/transfun.E102.A.966 |
18 |
LIEDER A , BRISKORN D , STOLLETZ R . A dynamic programming approach for the aircraft landing problem with aircraft classes[J]. European Journal of Operational Research, 2015, 243 (1): 61- 69.
doi: 10.1016/j.ejor.2014.11.027 |
19 |
GHONIEM A , FARHADI F . A column generation approach for aircraft sequencing problems: a computational study[J]. Journal of the Operational Research Society, 2015, 66 (10): 1717- 1729.
doi: 10.1057/jors.2014.131 |
20 | SU X C , HAN W . A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, (2018): 6932985. |
21 | 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的进场航班动态协同排序方法[J]. 航空学报, 2020, 41 (7): 323717. |
LIU J X , JIANG H , DONG X F , et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (7): 323717. | |
22 |
BENNELL J A , MESGARPOUR M , POTTS C N . Dynamic scheduling of aircraft landings[J]. European Journal of Operational Research, 2017, 258 (1): 315- 327.
doi: 10.1016/j.ejor.2016.08.015 |
23 |
FURINI F , KIDD M P , PERSIANI C A , et al. Improved rolling horizon approaches to the aircraft sequencing problem[J]. Journal of Scheduling, 2015, 18, 435- 447.
doi: 10.1007/s10951-014-0415-8 |
24 | ERDOGAN S A , DENTON B . Dynamic appointment scheduling of a stochastic server with uncertain demand[J]. Journal on Computing, 2013, 25 (1): 116- 132. |
25 | CASTAING J. Scheduling under uncertainty: applications to aviation, healthcare and aerospace[D]. Michigan: University of Michigan, 2017. |
26 |
ERDOGAN S A , GOSE A , DENTON B . On-line appointment sequencing and scheduling[J]. IIE Transactions, 2015, 47, 1267- 1286.
doi: 10.1080/0740817X.2015.1011355 |
27 |
STORN R . Designing nonstandard filters with differential evolution[J]. IEEE Signal Processing Magazine, 2005, 22 (1): 103- 106.
doi: 10.1109/MSP.2005.1407721 |
28 |
LI Y Z , WANG S H . Differential evolution algorithm with elite archive and mutation strategies collaboration[J]. Artificial Intelligence Review, 2020, 53 (3): 4005- 4050.
doi: 10.1007/s10462-019-09786-5 |
29 | CARLO M D , VASILE M , MINISCI E . Adaptive multi-population inflationary differential evolution[J]. Soft Computing, 2020, 24 (6): 3861- 3891. |
30 | 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38 (2): 020435. |
ZHEN Z Y , WANG X H , JIANG J , et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (2): 020435. | |
31 | PINEDO M L . Scheduling theory, algorithms, and systems[M]. 5th ed. Heidelberg/New York: Springer Science & Business Media, 2016. |
32 | CCAR-93-R5. 民用航空空中交通管理规则[S]. 北京: 中国民用航空局, 2018. |
39 | CCAR-93-R5. Civil aviation air traffic management rules[S]. Beijing: Civil Aviation Administration of China, 2018. |
[1] | 张勇, 李常久, 苏析超, 崔荣伟. 基于HTLBO算法的舰载机机群机库维修任务调度[J]. 系统工程与电子技术, 2022, 44(9): 2858-2868. |
[2] | 谭目来, 丁达理, 谢磊, 丁维, 吕丞辉. 基于模糊专家系统与IDE算法的UCAV逃逸机动决策[J]. 系统工程与电子技术, 2022, 44(6): 1984-1993. |
[3] | 邓嘉宁, 吴宇, 许舒婷, 苟进展. 基于模糊贝叶斯-ANP舰载机出动回收综合评估[J]. 系统工程与电子技术, 2022, 44(11): 3423-3432. |
[4] | 韩维, 崔凯凯, 刘洁, 王昕炜, 张勇. 基于自校正MPC的舰载机着舰控制技术[J]. 系统工程与电子技术, 2022, 44(1): 250-261. |
[5] | 陈云翔, 饶益, 蔡忠义, 王泽洲. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术, 2021, 43(9): 2688-2696. |
[6] | 曾斌, 陈媛媛, 李厚朴. 考虑保障装备可用度的舰载机作业调度优化[J]. 系统工程与电子技术, 2021, 43(7): 1856-1865. |
[7] | 崔荣伟, 韩维, 苏析超, 王立国, 刘玉杰. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893. |
[8] | 吴文海, 郭晓峰, 周思羽, 高丽. 基于随机邻域策略和广义反向学习的自适应差分进化算法[J]. 系统工程与电子技术, 2021, 43(7): 1928-1942. |
[9] | 吴文海, 郭晓峰, 周思羽, 高丽. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43(4): 1012-1021. |
[10] | 万兵, 韩维, 梁勇, 郭放. 舰载机出动离场调度优化算法[J]. 系统工程与电子技术, 2021, 43(12): 3624-3634. |
[11] | 岳奎志, 赵建忠, 程亮亮, 郁大照. 舰载机着舰航线侧方计时建模与分析[J]. 系统工程与电子技术, 2020, 42(6): 1332-1337. |
[12] | 吴文海, 郭晓峰, 周思羽. 基于NURBS和GOBL-ACDE的航迹规划算法[J]. 系统工程与电子技术, 2020, 42(5): 1073-1082. |
[13] | 袁培龙, 韩维, 苏析超, 高少辉. 不确定环境下舰载机保障预反应式动态调度优化[J]. 系统工程与电子技术, 2019, 41(6): 1265-1277. |
[14] | 李世豪, 丁勇, 高振龙. 基于直觉模糊博弈的无人机空战机动决策[J]. 系统工程与电子技术, 2019, 41(5): 1063-1070. |
[15] | 王亚东, 石全, 张芳, 尤志锋, 夏伟. 基于动态进化算法的多阶段备件供应优化决策[J]. 系统工程与电子技术, 2019, 41(11): 2514-2523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||