1 |
SCHRITTWIESER J , ANTONOGLOU I , HUBERT T , et al. Mastering Atari, Go, chess and shogi by planning with a learned model[J]. Nature, 2020, 588 (7839): 604- 609.
doi: 10.1038/s41586-020-03051-4
|
2 |
SILVER D , HUBERT T , SCHRITTWIESER J , et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play[J]. Science, 2018, 362 (6419): 1140- 1144.
doi: 10.1126/science.aar6404
|
3 |
SILVER D , SCHRITTWIESER J , SIMONYAN K , et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550 (7676): 354- 359.
doi: 10.1038/nature24270
|
4 |
SILVER D , HUANG A , MADDISON C , et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529 (7589): 484- 489.
|
5 |
NOAM B , TUOMAS S . Superhuman AI for multiplayer poker[J]. Science, 2019, 365 (6456): 885- 890.
doi: 10.1126/science.aay2400
|
6 |
MATEJ M , MARTIN S , NEIL B , et al. Deep-stack: expert-level artificial intelligence in heads-up no-limit poker[J]. Science, 2017, 356 (6337): 508- 513.
doi: 10.1126/science.aam6960
|
7 |
VINYALS O , BABUSCHKIN I , CZARNECKI W M , et al. Grandmaster level in starcraft Ⅱ using multi-agent reinforcement learning[J]. Nature, 2019, 575 (7782): 350- 369.
doi: 10.1038/s41586-019-1724-z
|
8 |
胡晓峰, 贺筱媛, 陶九阳. AlphaGo的突破与兵棋推演的挑战[J]. 科技导报, 2017, (21): 51- 62.
|
|
HU X F , HE X Y , TAO J Y . AlphaGo's breakthrough and challenges of wargaming[J]. Science & Technology Review, 2017, (21): 51- 62.
|
9 |
胡晓峰, 荣明. 智能化作战研究值得关注的几个问题[J]. 指挥与控制学报, 2018, 4 (3): 195- 200.
doi: 10.3969/j.issn.2096-0204.2018.03.0195
|
|
HU X F , RONG M . Several important questions of intelligent warfare research[J]. Journal of Command and Control, 2018, 4 (3): 195- 200.
doi: 10.3969/j.issn.2096-0204.2018.03.0195
|
10 |
刘海洋, 唐宇波, 胡晓峰, 等. 面向联合作战评估的兵棋推演实验研究[J]. 指挥与控制学报, 2018, 4 (4): 272- 280.
|
|
LIU H Y , TANG Y B , HU X F , et al. Wargaming experiment oriented evaluation of joint operations[J]. Journal of Command and Control, 2018, 4 (4): 272- 280.
|
11 |
YUNA H W, JOHN Y, ROBERT W, et al. Deterrence in the age of thinking machines[R]. California: RAND Corporation, 2020.
|
12 |
KELSEY A. DARPA wants wargame AI to never fight fair[EB/OL]. [2020-11-13]. https://breakingdefense.com/2020/08/darpa-wants-wargame-ai-to-never-fight-fair/.
|
13 |
周超, 胡晓峰, 郑书奎, 等. 战略战役兵棋演习系统兵力聚合问题研究[J]. 指挥与控制学报, 2017, 3 (1): 19- 26.
|
|
ZHOU C , HU X F , ZHENG S K , et al. Force integration in strategic and operational war-game maneuver system[J]. Journal of Command and Control, 2017, 3 (1): 19- 26.
|
14 |
黄凯奇, 兴军亮, 张俊格, 等. 人机对抗智能技术[J]. 中国科学: 信息科学, 2020, 50 (4): 540- 550.
|
|
HUANG K Q , XING J L , ZHANG J G , et al. Intelligent technologies of human-computer gaming (in Chinese)[J]. Scientia Sinica Informationis, 2020, 50 (4): 540- 550.
|
15 |
中国科学院自动化研究所. 即时策略人机对抗平台[EB/OL]. [2020-11-13]. http://wargame.ia.ac.cn.
|
|
Institute of Automation, Chinese Academy of Sciences. Real-time strategy man-machine confrontation platform[EB/OL]. [2020-11-13]. http://wargame.ia.ac.cn.
|
16 |
MOY G, SHEKH S. The application of alphazero to wargaming[C]//Proc. of the 32nd Australasian Joint Conference on Artificial Intelligence, 2019: 3-14.
|
17 |
殷昌盛, 杨若鹏, 邹小飞, 等. 指挥智能化研究综述[C]//第8届中国指挥控制大会, 2020: 110-115.
|
|
YIN C S, YANG R P, ZOU X F, et al. A survey on military intelligent command[C]//Proc. of the 8th China Command and Control Conference, 2020: 110-115.
|
18 |
李琛, 黄炎焱, 张永亮, 等. Actor-Critic框架下的多智能体决策方法及其在兵棋上的应用[J]. 系统工程与电子技术, 2021, 43 (3): 755- 762.
|
|
LI C , HUANG Y Y , ZHANG Y L , et al. Multi-agent decision-making method based on Actor-Critic framework and its application in wargame[J]. Systems Engineering and Electronics, 2021, 43 (3): 755- 762.
|
19 |
刘满, 张宏军, 郝文宁, 等. 战术级兵棋实体作战行动智能决策方法研究[J]. 控制与决策, 2020, 35 (12): 2977- 2985.
|
|
LIU M , ZHANG H J , HAO W N , et al. Research on intelligent decision-making method of tactical-level wargames[J]. Control and Decision, 2020, 35 (12): 2977- 2985.
|
20 |
李航, 刘代金, 刘禹. 军事智能博弈对抗系统设计框架研究[J]. 火力与指挥控制, 2020, 45 (9): 116- 121.
doi: 10.3969/j.issn.1002-0640.2020.09.021
|
|
LI H , LIU D J , LIU Y . Architecture design research of military intelligent wargame system[J]. Fire Control & Command Control, 2020, 45 (9): 116- 121.
doi: 10.3969/j.issn.1002-0640.2020.09.021
|
21 |
张永亮, 董浩洋, 刘勇. 基于知识的智能指挥决策运行机制及其支撑技术研究[J]. 军事运筹与系统工程, 2020, 34 (2): 5- 12.
doi: 10.3969/j.issn.1672-8211.2020.02.002
|
|
ZHANG Y L , DONG H Y , LIU Y . Research on the support technology and its intelligent command decision-making mechanism based on knowledge[J]. Military Operations Research and Systems Engineering, 2020, 34 (2): 5- 12.
doi: 10.3969/j.issn.1672-8211.2020.02.002
|
22 |
PANDEY G, DUKKIPATI A. Variational methods for conditional multimodal deep learning[C]//Proc. of the International Joint Conference on Neural Networks, 2017: 308-315.
|
23 |
HYUNJIK K, ANDRIY M, JONATHAN S, et al. Attentive neural processes[C]//Proc. of the 7th International Conference on Learning Representations, 2019.
|
24 |
张可, 郝文宁, 余晓晗, 等. 基于遗传模糊系统的兵棋推演关键点推理方法[J]. 系统工程与电子技术, 2020, 42 (10): 2303- 2311.
doi: 10.3969/j.issn.1001-506X.2020.10.19
|
|
ZHANG K , HAO W N , YU X H , et al. Wargame key point reasoning method based on genetic fuzzy system[J]. Systems Engineering and Electronics, 2020, 42 (10): 2303- 2311.
doi: 10.3969/j.issn.1001-506X.2020.10.19
|
25 |
JARRAYA Y , BOUAZIZ S , HAGRAS H , et al. A multi-agent architecture for the design of hierarchical interval type-2 beta fuzzy system[J]. IEEE Trans.on Fuzzy Systems, 2019, 27 (6): 1174- 1188.
doi: 10.1109/TFUZZ.2018.2871800
|
26 |
ILCHE G I , MARCO A . HTN planning: overview, comparison, and beyond[J]. Artificial Intelligence, 2015, 222 (2015): 124- 156.
|
27 |
HOLLER D, BERCHER P, BEHNKE G, et al. On guiding search in htn planning with classical planning heuristics[C]//Proc. of the 28th International Joint Conference on Artificial Intelligence, 2019: 6171-6175.
|
28 |
邵天浩, 张宏军, 程恺, 等. 层次任务网络中的重新规划研究综述[J]. 系统工程与电子技术, 2020, 42 (12): 2833- 2846.
doi: 10.3969/j.issn.1001-506X.2020.12.21
|
|
SHAO T H , ZHANG H J , CHENG K , et al. Review of replanning in hierarchical task network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2833- 2846.
doi: 10.3969/j.issn.1001-506X.2020.12.21
|
29 |
MUNOZ A H, DANNENHAUER D, REIFSNYDER N. Is everything going according to plan?Expectations in goal reasoning agents[C]//Proc. of the 33rd AAAI Conference on Artificial Intelligence, 2019.
|
30 |
HOLLER D, BERCHER P, BEHNKE G, et al. HTN plan repair using unmodified planning systems[C]//Proc. of the Inter-national Conference on Automated Planning and Scheduling, 2018: 26-30.
|
31 |
YE D, LIU Z, SUN M, et al. Mastering complex control in moba games with deep reinforcement learning[C]//Proc. of the 34th AAAI Conference on Artificial Intelligence, 2020.
|
32 |
WU B, FU Q, LIANG J, et al. Hierarchical macro strategy model for MOBA Game AI[EB/OL]. [2020-11-14]. https://arxiv.org/abs/1812.07887v1.
|