系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2766-2774.doi: 10.12305/j.issn.1001-506X.2021.10.08
代晓康1, 殷君君1,*, 杨健2
收稿日期:
2021-02-22
出版日期:
2021-10-01
发布日期:
2021-11-04
通讯作者:
殷君君
作者简介:
代晓康(1996—), 男, 硕士研究生, 主要研究方向为极化SAR图像目标检测|殷君君(1983—), 女, 副教授,博士, 主要研究方向为雷达极化应用的基础理论、极化合成孔径雷达图像理解、图像分割与地物分类、目标检测等|杨健(1965—), 男, 教授, 博士研究生导师, 博士,主要研究方向为雷达极化的遥感应用理论、最优极化、数学建模与模糊集理论
基金资助:
Xiaokang DAI1, Junjun YIN1,*, Jian YANG2
Received:
2021-02-22
Online:
2021-10-01
Published:
2021-11-04
Contact:
Junjun YIN
摘要:
针对极化合成孔径雷达(synthetic aperture radar, SAR)在城市区域复杂地物条件下的密集车辆目标检测问题, 提出了一种结合超像素分割和Wishart分类器的非监督目标检测方法。首先,根据不同地物的极化散射特征检测出建筑物。然后,利用不包含建筑物的Wishart分类器和超像素分割获得目标的形态信息。接着,利用包含建筑物的Wishart分类器获得目标中心点。最后,通过区域生长对二者进行信息融合并完成目标检测任务。基于X波段的机载极化SAR数据表明, 所提算法不仅可以对密集目标进行区分和定位, 并且目标形态保持完整; 相比于传统方法, 目标检测与虚警鉴别性能得到较大提升。
中图分类号:
代晓康, 殷君君, 杨健. 基于Wishart距离和超像素的极化SAR图像车辆检测[J]. 系统工程与电子技术, 2021, 43(10): 2766-2774.
Xiaokang DAI, Junjun YIN, Jian YANG. Vehicle detection based on Wishart distance and superpixel in polarimetric SAR image[J]. Systems Engineering and Electronics, 2021, 43(10): 2766-2774.
1 | WANG T, YIN J J, YANG J, et al. Image gradient-based fast superpixel segmentation algorithm for PolSAR images[C]//Proc. of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019. |
2 | LIN H P, BAO J L, YIN J J, et al. Superpixel segmentation with boundary constraints for polarimetric SAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 6195-6198. |
3 | BAO J L, YIN J J, YANG J. Superpixel-based segmentation for multi-temporal PolSAR images[C]//Prof. of the Electromagnetics Research Symposium-Fall, 2017: 654-658. |
4 |
LIN H P , YUAN F , XING C , et al. An edge attention-based geodesic distance for PolSAR image superpixel segmentation[J]. Electronics Letters, 2020, 56 (10): 510- 512.
doi: 10.1049/el.2019.3890 |
5 |
QUAN S N , XIANG D L , WANG W , et al. Scattering feature-driven superpixel segmentation for polarimetric SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2173- 2183.
doi: 10.1109/JSTARS.2021.3053161 |
6 | PIRRONE D , DE S , BHATTACHARYA A , et al. An Unsupervised approach to change detection in Built-up areas by multitemporal PolSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (11): 1914- 1918. |
7 |
ZHAO J Q , CHANG Y L , YANG J , et al. A novel change detection method based on statistical distribution characteristics using multi-temporal PolSAR data[J]. Sensors, 2020, 20 (5): 1508.
doi: 10.3390/s20051508 |
8 | LIU F , TANG X , ZHANG X R , et al. Large-scope PolSAR image change detection based on looking-around-and-into mode[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (1): 363- 378. |
9 |
AKBARI V , ANFINSEN S N , DOULGERIS A P , et al. Polarimetric SAR change detection with the complex hotelling-lawley trace statistic[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (7): 3953- 3966.
doi: 10.1109/TGRS.2016.2532320 |
10 |
黄晨霞, 殷君君, 杨健. 基于l1范数主成分分析的极化SAR图像变化检测[J]. 系统工程与电子技术, 2019, 41 (10): 2214- 2220.
doi: 10.3969/j.issn.1001-506X.2019.10.09 |
HUANG C X , YIN J J , YANG J . Polarimetric SAR change detection with l1-norm principal component analysis[J]. Systems Engineering and Electronics, 2019, 41 (10): 2214- 2220.
doi: 10.3969/j.issn.1001-506X.2019.10.09 |
|
11 | LIU X Y, YIN J J, ZHANG J H, et al. Land cover classification for polsar images based on mixture models and MRF[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 1711-1714. |
12 |
YIN J J , LIU X Y , YANG J , et al. PolSAR image classification based on statistical distribution and MRF[J]. Remote Sensing, 2020, 12 (6): 1027.
doi: 10.3390/rs12061027 |
13 | LIU X Y, YIN J J, WANG T. Local competitive wishart classifier for polarimetric sar images[C]//Prof. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 2591-2594. |
14 |
DUAN Y , CHEN N , CHEN Y B . A novel PolSAR image classification method based on optimal polarimetric features and contextual information[J]. Canadian Journal of Remote Sensing, 2019, 45 (6): 795- 813.
doi: 10.1080/07038992.2019.1697222 |
15 |
ZOU B , XU X F , ZHANG L M . Object-based classification of polsar images based on spatial and semantic features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 609- 619.
doi: 10.1109/JSTARS.2020.2968966 |
16 |
GU M F , LIU H W , WANG Y , et al. PolSAR target detection via reflection symmetry and a wishart classifier[J]. IEEE Access, 2020, 8, 103317- 103326.
doi: 10.1109/ACCESS.2020.2999472 |
17 |
HE J L , WANG Y H , LIU H W , et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (3): 384- 388.
doi: 10.1109/LGRS.2017.2789204 |
18 |
WANG Y H , LIU H W . PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1780- 1784.
doi: 10.1109/LGRS.2015.2425873 |
19 | NEUMANN C, BRANDFAßM. Polarimetric target detection on SAR images[C]//Proc. of the 20th International Radar Symposium, 2019. |
20 | 高军山, 陈杭, 林慧平, 等. 高分辨力极化SAR图像城市区域车辆目标检测[J]. 太赫兹科学与电子信息学报, 2018, 16 (4): 603- 608. |
GAO J S , CHEN H , LIN H P , et al. Vehicle detection over urban areas in high resolution polarimetric SAR images[J]. Terahertz Science and Electronic Information Technology, 2018, 16 (4): 603- 608. | |
21 |
ZHANG Z , ZOU C , HAN P , et al. A runway detection method based on classification using optimized polarimetric features and hog features for PolSAR images[J]. IEEE Access, 2020, 8, 49160- 49168.
doi: 10.1109/ACCESS.2020.2979737 |
22 | 刘春, 包君梁, 杨健, 等. 基于混合Wishart分布MRF分割的极化SAR图像海岸线检测[J]. 系统工程与电子技术, 2020, 42 (3): 568- 574. |
LIU C , BAO J L , YANG J , et al. Coastline detection in polarimetric SAR images using Markov random field segmentation based on mixture Wishart distribution[J]. Systems Engineering and Electronics, 2020, 42 (3): 568- 574. | |
23 |
LIU C , XIAO Y , YANG J . A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (7): 3735- 3747.
doi: 10.1109/TGRS.2017.2679112 |
24 |
NOVAK L M , BURL M C . Optimal speckle reduction in polari-metric SAR imagery[J]. IEEE Trans.on Aerospace and Electronic Systems, 1990, 26 (2): 293- 305.
doi: 10.1109/7.53442 |
25 | LIU Z F, PING Q W, HE P K. An improved algorithm for the detection of vehicle group targets in high-resolution SAR images[C]//Proc. of the 3th International Conference on Microwave and Millimeter Wave Technology, 2002: 572-575. |
26 |
LEE J S , GRUNES M R . Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15 (11): 2299- 2311.
doi: 10.1080/01431169408954244 |
27 |
张嘉峰, 朱博, 张鹏, 等. Wishart分布情形下极化SAR图像目标CFAR检测解析方法[J]. 电子学报, 2018, 46 (2): 433- 439.
doi: 10.3969/j.issn.0372-2112.2018.02.024 |
ZHANG J F , ZHU B , ZHANG P , et al. Polarimetric SAR imagery target CFAR detection analytical algorithm with Wishart distribution[J]. Acta Electronica Sinica, 2018, 46 (2): 433- 439.
doi: 10.3969/j.issn.0372-2112.2018.02.024 |
|
28 |
AN W T , CUI Y , YANG J , et al. Fast alternatives to H/alpha for Polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7 (2): 343- 347.
doi: 10.1109/LGRS.2009.2035135 |
29 |
韩萍, 周波, 卢斌, 等. 环境特征与散射特性融合的PolSAR飞机目标检测[J]. 系统工程与电子技术, 2020, 42 (10): 2231- 2238.
doi: 10.3969/j.issn.1001-506X.2020.10.11 |
HAN P , ZHOU B , LU B , et al. Aircraft target detection of PolSAR based on the fusion of environmental feature and scattering characteristics[J]. Systems Engineering and Electronics, 2020, 42 (10): 2231- 2238.
doi: 10.3969/j.issn.1001-506X.2020.10.11 |
|
30 |
LEVINSHTEIN A , STERE A , KUTULAKOS K N , et al. TurboPixels: fast superpixels using geometric flows[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2290- 2297.
doi: 10.1109/TPAMI.2009.96 |
[1] | 牛朝阳, 王建涛, 胡涛, 刘伟, 李润生. 极化合成孔径雷达有源干扰的干信比方程[J]. 系统工程与电子技术, 2021, 43(12): 3542-3551. |
[2] | 韩萍, 周波, 卢斌, 韩宾宾. 环境特征与散射特性融合的PolSAR飞机目标检测[J]. 系统工程与电子技术, 2020, 42(10): 2231-2238. |
[3] | 邵宁远, 邹焕新, 陈诚, 李美霖, 秦先祥. 面向变化检测的SAR图像超像素协同分割算法[J]. 系统工程与电子技术, 2019, 41(7): 1496-1503. |
[4] | 韩萍, 贾锟, 卢晓光, 韩宾宾. PolSAR图像的改进非局部均值滤波算法[J]. 系统工程与电子技术, 2019, 41(5): 992-999. |
[5] | 黄晨霞, 殷君君, 杨健. 基于l1范数主成分分析的极化SAR图像变化检测[J]. 系统工程与电子技术, 2019, 41(10): 2214-2220. |
[6] | 王剑, 王英华, 刘宏伟, 何敬鲁. 基于深度卷积神经网络的PolSAR图像变化检测方法[J]. 系统工程与电子技术, 2018, 40(7): 1457-1464. |
[7] | 韩萍, 韩宾宾. 基于典型散射差异指数的PolSAR图像Lee滤波 [J]. 系统工程与电子技术, 2018, 40(2): 287-294. |
[8] | 张海瀛, 李真芳, 解金卫. 车载全极化InSAR系统通道误差校正[J]. 系统工程与电子技术, 2017, 39(2): 298-303. |
[9] | 韩萍, 常玲, 程争, 石庆研. 基于h/q分解和贝叶斯迭代分类的跑道检测算法[J]. 系统工程与电子技术, 2016, 38(9): 2048-2054. |
[10] | 杨帅, 陈启浩, 刘修国, 陈奇. 面向高分辨率极化SAR四分量分解的相干矩阵自适应估计[J]. 系统工程与电子技术, 2016, 38(1): 53-59. |
[11] | 何伟, 邢孟道. 基于密度峰值搜索的全极化SAR图像分类[J]. 系统工程与电子技术, 2016, 38(1): 60-63. |
[12] | 谭洪, 仇晓兰, 洪峻. 原始数据压缩对全极化SAR极化信息的影响[J]. 系统工程与电子技术, 2015, 37(9): 2029-2034. |
[13] | 李增辉, 常雯, 杨健. 基于超分辨极化SAR图像的舰船检测算法[J]. 系统工程与电子技术, 2015, 37(8): 1773-1777. |
[14] | 韩萍, 丛润民, 张在吉. 基于极化状态提取的极化SAR图像变化检测算法[J]. 系统工程与电子技术, 2015, 37(7): 1526-1530. |
[15] | 刘修国, 陈奇, 陈启浩, 徐乔. 综合多特征的高分辨率极化SAR图像分割[J]. 系统工程与电子技术, 2015, 37(3): 553-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||