系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2742-2755.doi: 10.12305/j.issn.1001-506X.2021.10.06
杜延磊1,2, 高帆2, 刘涛3, 杨健2,*
收稿日期:
2021-08-03
出版日期:
2021-10-01
发布日期:
2021-11-04
通讯作者:
杨健
作者简介:
杜延磊(1991—), 男, 助理研究员, 博士, 主要研究方向为计算电磁学、海洋微波遥感|高帆(1999—), 男, 博士研究生, 主要研究方向为极化SAR信息处理|刘涛(1979—), 男, 教授, 博士, 主要研究方向为极化SAR舰船检测|杨健(1965—), 男, 教授, 博士, 主要研究方向为极化雷达理论与应用
基金资助:
Yanlei DU1,2, Fan GAO2, Tao LIU3, Jian YANG2,*
Received:
2021-08-03
Online:
2021-10-01
Published:
2021-11-04
Contact:
Jian YANG
摘要:
针对3~5级海况下X波段极化合成孔径雷达(synthetic aperture radar, SAR)海杂波的仿真和统计建模, 首先利用Apel海浪谱模型和Monte Carlo方法仿真不同风速下的大尺寸二维粗糙海面, 进而分别利用物理光学模型和弹跳射线法两种高频电磁散射模型考虑海面的单次散射和多次散射, 实现大尺寸海面的极化SAR海杂波仿真, 并利用X波段地球物理模式函数和岸基实测海杂波对仿真海杂波的精度和统计分布进行验证。基于仿真海杂波数据, 利用典型的乘积模型和Mellin类统计量开展海杂波统计建模和特性分析。仿真结果表明, 在2 m×2 m的高分辨率条件下, X波段同极化海杂波并不服从适用于中低分辨率海杂波的K分布, 且在不同风速风向下呈现出不同的纹理特征; X波段交叉极化海杂波表现出较弱的纹理特征, 服从Wishart分布; 随着入射角和雷达视数的增大, 海杂波的纹理特征逐渐减弱。
中图分类号:
杜延磊, 高帆, 刘涛, 杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析[J]. 系统工程与电子技术, 2021, 43(10): 2742-2755.
Yanlei DU, Fan GAO, Tao LIU, Jian YANG. Statistical modeling and characteristic analysis of polarimetric SAR sea clutter at X-band based on numerical simulations[J]. Systems Engineering and Electronics, 2021, 43(10): 2742-2755.
表1
海面棱边散射几何示意图及参数定义"
分布模型 | 纹理参数τ | 散射向量k的PDF | 极化协方差矩阵C的PDF | 公式编号 | |
模型 | |||||
K分布 | γ分布 | (32) | |||
G0分布 | 逆γ分布 | (33) | |||
Kummer-U分布 | Fisher分布 | (34) | |||
W分布 | β分布 | (35) | |||
M分布 | 逆β分布 | (36) |
表2
典型纹理分布模型的对数累积量"
纹理模型 | 对数累积量υv{τ} |
γ分布 | |
逆γ分布 | |
Fisher分布 | |
β分布 | |
逆β分布 |
1 | 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8 (3): 281- 302. |
DING H , LIU N B , DONG Y L , et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8 (3): 281- 302. | |
2 | 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9 (4): 684- 714. |
XU S W , BAI X H , GUO Z X , et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9 (4): 684- 714. | |
3 | 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8 (5): 656- 667. |
LIU N B , DONG Y L , WANG G Q , et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8 (5): 656- 667. | |
4 | 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5 (5): 499- 516. |
DING H , DONG Y L , LIU N B , et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5 (5): 499- 516. | |
5 | TSANG L , KONG J A , SHIN R T . Scattering of electromagnetic waves: numerical simulations[M]. New York: Wiley, 2000, 2nd ed |
6 | ULABY F T , LONG D G . Microwave radar and radiometric remote sensing[M]. Ann Arbor: University of Michigan Press, 2015. |
7 | FUNG A K . Microwave scattering and emission models and their applications[M]. Boston: Artech House, 1994. |
8 | 杨健, 殷君君. 极化雷达理论与遥感应用[M]. 北京: 科学出版社, 2020. |
YANG J , YIN J J . Polarimetric radar theory and remote sensing application[M]. Beijing: Science Press, 2020. | |
9 |
LIU T , ZHANG J F , GAO G , et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (1): 58- 81.
doi: 10.1109/TGRS.2019.2931353 |
10 | DENG X P , LOPEZ-MARTINEZ C , CHEN J S , et al. Statistical modeling of polarimetric sar data: a survey and challenges[J]. Remote Sensing, 2017, 9 (4): 25817172. |
11 | 郭立新, 王蕊, 吴振森. 随机粗糙面散射的基本理论与方法[M]. 北京: 科学出版社, 2010. |
GUO L X , WANG R , WU Z S . Basic theory and method of random rough surface scattering[M]. Beijing: Science Press, 2010. | |
12 |
石志广, 周剑雄, 付强. K分布海杂波参数估计方法研究[J]. 信号处理, 2007, (3): 420- 424.
doi: 10.3969/j.issn.1003-0530.2007.03.023 |
SHI Z G , ZHOU J X , FU Q . Parameter estimation study of K distributed sea clutter[J]. Signal Processing, 2007, (3): 420- 424.
doi: 10.3969/j.issn.1003-0530.2007.03.023 |
|
13 |
吴振森, 衣方磊. 一维动态海面的电磁散射杂波模拟和参数估计[J]. 电波科学学报, 2003, (2): 132- 137.
doi: 10.3969/j.issn.1005-0388.2003.02.003 |
WU Z S , YI F L . Numerical simulation and parameters estimation of scattering clutter from 1-D time-varying sea surface[J]. Chinese Journal of Radio Science, 2003, (2): 132- 137.
doi: 10.3969/j.issn.1005-0388.2003.02.003 |
|
14 | NICOLAS J M . Introduction to second kind statistics: application of Log-moments and Log-cumulants to SAR image law analysis[J]. Traitement du Signal, 2002, 19 (3): 139- 167. |
15 |
ANFINSEN S N , ELTOFT T . Application of the matrix-variate mellin transform to analysis of polarimetric radar images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (6): 2281- 2295.
doi: 10.1109/TGRS.2010.2103945 |
16 | 杜延磊. 随机粗糙海面微波散射/辐射的仿真与分析: 解析近似模型和数值方法[D]. 北京: 中国科学院遥感与数字地球研究所, 2019. |
DU Y L. Simulations and analyses of microwave scattering and emission from randomly rough ocean surfaces: analytic approximate models and numerical methods[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2019. | |
17 |
DU Y L , YIN J J , TAN S R . A numerical study of roughness scale effects on ocean radar scattering using the second-order SSA and the moment method[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (10): 6874- 6887.
doi: 10.1109/TGRS.2020.2977368 |
18 | QIAO T , DU Y L , TSANG L , et al. Radar scattering of ocean surface with anisotropic ocean spectrum using NMM3D simulations[M]. Boca Raton: CRC Press, 2018. |
19 | APEL J R . An improved model of the ocean surface-wave vector spectrum and its effects on radar backscatter[J]. Geophys Res-Oceans, 1994, 9 (8): 16269- 16291. |
20 | DU Y L , YANG X F , CHEN K S , et al. An improved spectrum model for sea surface radar backscattering at L-band[J]. Remote Sensing, 2017, 9 (8): 25251- 25267. |
21 |
QIAO T , DU Y L , TSANG L . Electromagnetic scattering and emission by ocean surfaces based on neighborhood impedance boundary condition (NIBC) with dense grid: accurate emissivity and sensitivity to salinity[J]. Progress in Electromagnetics Research B, 2018, 81, 141- 162.
doi: 10.2528/PIERB18050706 |
22 |
HASTINGS F D , SCHNEIDER J B , BROSCHAT S , et al. An FDTD method for analysis of scattering from rough fluid-fluid interfaces[J]. IEEE Journal of Oceanic Eng, 2001, 26 (1): 94- 101.
doi: 10.1109/48.917937 |
23 |
LOU S H , TSANG L , CHAN C H , et al. Application of the finite-element method to Monte-Carlo simulations of scattering of waves by random rough surfaces with the periodic boundary-condition[J]. Electromagnet Wave, 1991, 5 (8): 835- 855.
doi: 10.1163/156939391X00275 |
24 |
DU Y L . Electromagnetic scattering and emission from large rough surfaces with multiple elevations using the MLSD-SMCG method[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (7): 5393- 5406.
doi: 10.1109/TGRS.2020.3016997 |
25 | YANG J S, DU Y, SHI J C. Polarimetric simulations of bistatic scattering from perfectly conducting ocean surfaces with 3 m/s wind speed at L-band[J]. IEEE Journal of STARS, 9(3): 1176-1186. |
26 |
GORDON W B . Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields[J]. IEEE Trans.on Antennas and Propagation, 1975, 23 (4): 590- 592.
doi: 10.1109/TAP.1975.1141105 |
27 |
LING H , CHOU R C , LEE S W . Shooting and bouncing rays-calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Trans.on Antenn Propag, 1989, 37 (2): 194- 205.
doi: 10.1109/8.18706 |
28 |
ANFINSEN S N , DOULGERIS A P , ELTOFT T . Goodness-of-fit tests for multilook polarimetric radar data based on the mellin transform[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (7): 2764- 2781.
doi: 10.1109/TGRS.2010.2104158 |
29 | JOHNSON W P . The curious history of Faa di Bruno's formula[J]. Am Math Mon, 2002, 109 (3): 217- 234. |
30 |
NIRCHIO F , VENAFRA S . XMOD2—An improved geophysical model function to retrieve sea surface wind fields from Cosmo-Sky Med X-band data[J]. European Journal of Remote Sensing, 2013, 46 (1): 583- 595.
doi: 10.5721/EuJRS20134634 |
31 |
VORONOVICH A G , ZAVOROTNY V U . Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface[J]. IEEE Trans.on Antenn Propag, 2014, 62 (3): 1362- 1371.
doi: 10.1109/TAP.2013.2295235 |
32 | VORONOVICH A G, ZAVOROTNY V U. Depolarization of microwave backscattering from a rough sea surface: modeling with small-slope approximation[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2011: 2033-2036. |
33 | 刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10 (1): 173- 182. |
LIU N B , DING H , HUANG Y , et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10 (1): 173- 182. |
[1] | 时艳玲, 王磊, 李君豪. 基于投影空间下奇异值分解的海面小目标CFAR检测[J]. 系统工程与电子技术, 2022, 44(2): 512-519. |
[2] | 薛春岭, 曹菲, 孙庆, 秦建强, 冯晓伟. 基于多特征信息融合的海面微弱目标检测[J]. 系统工程与电子技术, 2022, 44(11): 3338-3345. |
[3] | 于伟强, 汪飞, 孙萍, 周建江, 陈军. 杂波背景下机载雷达信号参数的射频隐身优化[J]. 系统工程与电子技术, 2021, 43(11): 3194-3201. |
[4] | 施赛楠, 董泽远, 杨静, 杨春娇. 基于时频图自主学习的海面小目标检测[J]. 系统工程与电子技术, 2021, 43(1): 33-41. |
[5] | 黎鑫, 夏晓云, 张玉石, 水鹏朗, 张金鹏. UHF波段小擦地角海杂波幅度均值修正模型[J]. 系统工程与电子技术, 2020, 42(5): 1035-1040. |
[6] | 李海, 刘志鑫, 程伟杰, 庄子波, 范懿. 海杂波背景下基于MBMC的低空风切变风速估计方法[J]. 系统工程与电子技术, 2020, 42(11): 2481-2487. |
[7] | 董自巍, 孙俊, 孙晶明, 潘美艳. 稀疏字典学习海面微弱动目标检测[J]. 系统工程与电子技术, 2020, 42(1): 30-36. |
[8] | 时艳玲, 林毓峰, 梁丹丹. 非平稳海杂波背景下子带分段ANMF检测器[J]. 系统工程与电子技术, 2018, 40(4): 782-789. |
[9] | 曹健, 王兆祎, 胡进峰, 何子述. 基于知识辅助的天波雷达海杂波抑制方法[J]. 系统工程与电子技术, 2018, 40(3): 533-537. |
[10] | 夏晓云, 黎鑫, 张玉石, 万晋通. 基于相位的岸基雷达地海杂波分割方法[J]. 系统工程与电子技术, 2018, 40(3): 552-556. |
[11] | 赵文静, 金明录, 刘文龙. 海杂波环境下改进的中值矩阵检测方法[J]. 系统工程与电子技术, 2018, 40(10): 2173-2179. |
[12] | 许心瑜, 张玉石, 黎鑫, 李善斌, 李慧明. UHF波段海杂波时间相关性的海浪状态影响分析[J]. 系统工程与电子技术, 2017, 39(6): 1203-1207. |
[13] | 施赛楠, 水鹏朗, 杨春娇, 许述文. 基于逆高斯纹理空间相关性的雷达目标检测[J]. 系统工程与电子技术, 2017, 39(10): 2215-2220. |
[14] | 郭跃宇, 位寅生, 许荣庆, 鲁耀兵. 天波雷达多模分离的二维非满阵几何构型设计[J]. 系统工程与电子技术, 2016, 38(9): 2033-2039. |
[15] | 时艳玲, 林毓峰, 宛汀. 部分均匀海杂波中雷达目标的平滑自适应检测[J]. 系统工程与电子技术, 2016, 38(12): 2745-2751. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||