1 |
YEE K S . Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans.on Antennas Propagation, 1966, 14 (3): 302- 307.
doi: 10.1109/TAP.1966.1138693
|
2 |
OSWALD N, MONISMITH D R. Radar cross sections of objects with simulated defects using the parallel FDTD method[C]//Proc. of the IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, 2018.
|
3 |
SHIBAYAMA J, YAMAUCHI J, NAKANO H. Frequency-dependent FDTD analyses of terahertz plasmonic devices[C]//Proc. of the International Symposium on Antennas and Propagation, 2021: 457-458.
|
4 |
YAO H M, JIANG L J. Machine learning based neural network solving methods for the FDTD method[C]//Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 2321-2322.
|
5 |
HE X B, WEI B, FAN K H. A hybrid FDTD algorithm without the limitation of cfl condition[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2019.
|
6 |
LUEBBERS R, PENNEY C. Scattering from apertures in ground planes using FDTD[C]//Proc. of the IEEE Antennas and Propagation Society International Symposium, 1993: 822-825.
|
7 |
CANGELLARIS A C . Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides[J]. IEEE Microwave and Guided Wave Letters, 1993, 3 (1): 3- 5.
doi: 10.1109/75.180672
|
8 |
LUEBBERS R J, HUNSBERGER F P, KUNZ K S. FDTD formulation for frequency dependent permittivity[C]//Proc. of the Digest on Antennas and Propagation Society International Symposium, 1989: 50-53.
|
9 |
TIRKAS P A, BALANIS C A, RENAUT R A. Higher-order absorbing boundary conditions in FDTD method[C]//Proc. of the IEEE Antennas and Propagation Society International Symposium, 1998: 552-555.
|
10 |
POTTER M E , LAMOUREUX M . An FDTD scheme on a face-centered-cubic (FCC) grid for the solution of the wave equation[J]. Journal of Comput. Physics, 2011, 230 (15): 6169- 6183.
doi: 10.1016/j.jcp.2011.04.027
|
11 |
ZHANG Z Y, YANG L X, KONG W. Resonant frequency simulation of metal cavity based FCC-FDTD method[C]//Proc. of the IEEE International Conference on Microwave and Millimeter Wave Technology, 2016: 804-805.
|
12 |
LIU K B, AHMAD M, SHI L J, et al. CPML implementation for FCC-FDTD method[C]//Proc. of the 12th International Symposium on Antennas, Propagation and EM Theory, 2018.
|
13 |
朱殊来. 电磁场中的FCC-FDTD算法[D]. 成都: 电子科技大学, 2020.
|
|
ZHU S L. FCC-FDTD algorithm in electromagnetic field[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
14 |
SACKS Z S , KINGSLAND D M , LEE R , et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Trans.on Antennas & Propagation, 1995, 43 (12): 1460- 1463.
|
15 |
GEDNEY S D . An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. IEEE Trans.on Antennas & Propagation, 1996, 44 (12): 1630- 1639.
|
16 |
DING P P , WANG G F , LIN H , et al. Unconditionally stable FDTD formulation with UPML-ABC[J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (4): 161- 163.
doi: 10.1109/LMWC.2006.872147
|
17 |
MEHENNAOUI N, MERZOUKI A. SLIMANI D. 2D-FDTD-UPML simulation of wave propagation on dispersive media[C]//Proc. of the 3rd International Conference on Control, Engineering & Information Technology, 2015.
|
18 |
FENG N X , WANG J G , ZHU J , et al. Switchable truncations between the 1st-and 2nd-order DZT-CFS-UPMLs for relevant FDTD problems[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (1): 360- 365.
doi: 10.1109/TAP.2019.2930118
|
19 |
MAO Y F, ZHOU C M, ZHANG J. Implementation of UPML for weakly conditionally stable FDTD in periodic structures[C]//Proc. of the IEEE International Conference on Ultra-Wideband, 2010.
|
20 |
LUEBBERS R . Lossy dielectrics in FDTD[J]. IEEE Trans.on Antennas and Propagation, 1993, 41 (11): 1586- 1588.
doi: 10.1109/8.267361
|
21 |
DING J C, ZHAO Z Q, YANG Y H. Novel unconditionally stable ADI-FDTD method with low numerical dispersion[C]//Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 1165-1166.
|
22 |
KIM H, KIM W, KOH I, et al. Dispersion and maximum time step of 2D ADI and CN ID-FDTD[C]//Proc. of the Workshop on Computational Electromagnetics in Time-Domain, 2007.
|
23 |
CHEN G Z, YANG S C, CUI S, et al. Numerical dispersion reduction scheme for arbitrary order FDTD method[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019.
|
24 |
SU M, YI B, LIU P. Numerical dispersion analysis of an efficient unconditionally stable three-dimensional LOD-FDTD method[C]//Proc. of the IEEE International Conference on Signal Processing, Communication and Computing, 2013.
|
25 |
SUN M K , TAM W Y . Low numerical dispersion two-dimensional (2, 4) ADI-FDTD method[J]. IEEE Trans.on Antennas and Propagation, 2006, 54 (3): 1041- 1044.
doi: 10.1109/TAP.2006.869940
|
26 |
张志扬. 基于面中心立方体(FCC)网格的FDTD算法的研究[D]. 镇江: 江苏大学, 2017.
|
|
ZHANG Z Y. Research on FDTD algorithm based on face centered cube (FCC) grid[D]. Zhenjiang: Jiangsu University, 2017.
|
27 |
汪凯. 基于FCC-FDTD方法的NPML吸收边界条件和周期边界条件研究[D]. 镇江: 江苏大学, 2020.
|
|
WANG K. Study on NPML absorption boundary conditions and periodic boundary conditions based on FCC-FDTD method[D]. Zhenjiang: Jiangsu University, 2020.
|
28 |
葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2011.
|
|
GE D B , YAN Y B . Finite difference time domain method for electromagnetic wave[M]. Xi'an: Xidian University Press, 2011.
|
29 |
刘康兵. 基于面中心立方体(FCC)网格的电磁建模方法研究[D]. 镇江: 江苏大学, 2020.
|
|
LIU K B. Research on electromagnetic modeling method based on face centered cube (FCC) grid[D]. Zhenjiang: Jiangsu University, 2020.
|
30 |
SHUM S M , LUK K M . An effective FDTD near-to-far field transformation for radiation pattern calculation[J]. Microwave and Optical Technology Letters, 1999, 20 (2): 129- 131.
doi: 10.1002/(SICI)1098-2760(19990120)20:2<129::AID-MOP14>3.0.CO;2-C
|
31 |
LI Y, LI W, YUAN L. Research on RCS characteristic of three kinds of metal plate[C]//Proc. of the IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, 2012: 875-878.
|