系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (10): 2706-2717.doi: 10.12305/j.issn.1001-506X.2021.10.02
何思远, 朱凌昆*, 刘进, 边志丹, 张云华, 朱国强
收稿日期:
2021-01-19
出版日期:
2021-10-18
发布日期:
2021-10-18
通讯作者:
朱凌昆
作者简介:
何思远(1982—), 女, 教授, 博士,主要研究方向为计算电磁学、复杂目标电磁散射特性|朱凌昆(1994—), 男, 硕士研究生, 主要研究方向为复杂目标散射中心参数化建模方法|刘进(1990—), 男, 博士研究生, 主要研究方向为雷达目标特性|边志丹(1994—), 女, 博士研究生, 主要研究方向为复杂目标散射中心参数化建模方法|张云华(1981—), 男, 教授, 博士,主要研究方向为电磁散射与目标特性|朱国强(1959—), 男, 教授, 博士,主要研究方向为复杂目标电磁散射、电磁场理论与工程应用、天线理论与设计
Siyuan HE, Lingkun ZHU*, Jin LIU, Zhidan BIAN, Yunhua ZHANG, Guoqiang ZHU
Received:
2021-01-19
Online:
2021-10-18
Published:
2021-10-18
Contact:
Lingkun ZHU
摘要:
为进一步优化散射中心参数化模型建模方法, 本文从目标的几何模型出发, 对复杂目标结构按几何面进行分区编号后, 进行散射中心模型的正向自动化建模。自动化方法主要实现了模型长度、位置等参数的自动推算。该方法实现了对目标散射来源、散射机理和散射中心模型参数的全自动判定, 提高了建模效率。首先对几何模型部件分解, 然后采用射线追踪与分集技术, 将目标散射场依照精度要求简化为部分射线贡献叠加, 并研究了散射中心模型参数的自动推算。最后本文计算了一系列散射中心参数化模型, 并与可靠数据对比, 验证了本文自动化建模方法的有效性。
中图分类号:
何思远, 朱凌昆, 刘进, 边志丹, 张云华, 朱国强. 雷达目标散射中心正向自动化建模方法研究与实现[J]. 系统工程与电子技术, 2021, 43(10): 2706-2717.
Siyuan HE, Lingkun ZHU, Jin LIU, Zhidan BIAN, Yunhua ZHANG, Guoqiang ZHU. Research and implementation of forward automatic modeling methodfor radar target scattering center[J]. Systems Engineering and Electronics, 2021, 43(10): 2706-2717.
表3
简化坦克目标强散射源提取结果(θ=60°, φ=90°, f=9 GHz)"
序号 | 散射来源 | A | 散射机理 | α | L/m | 位置/m |
1 | 左轮盖与防御板 | 0.413 7 | 二面角 | 1 | 5.2 | (-0.55, 1.50, 1.27) |
2 | 车身与左防御板a | 0.019 0 | 二面角 | 1 | 0.69 | (1.45, -1, 1.37) |
3 | 车身与左防御板b | 0.034 7 | 二面角 | 1 | 0.81 | (-1.2, -1, 1.37) |
4 | 车身与左防御板c | 0.034 7 | 二面角 | 1 | 1.13 | (-2.7, -1, 1.37) |
5 | 车身与小方柱 | 0.085 2 | 二面角 | 1 | 0.5 | (-2.05, 0.25, 1.37) |
6 | 左防御板与小方柱 | 0.069 9 | 二面角 | 1 | 0.5 | (-2.05, 0.25, 1.47) |
7 | 炮筒 | 0.056 5 | 圆柱面 | 0.5 | 5 | (3.52, 0.08, 1.83) |
8 | 炮塔与左防御板 | 0.019 1 | 平板与圆柱 | 0.5 | 0 | (0, 1, 1.47) |
表5
BTR目标强散射源提取结果, θ=73°, φ=234°, f=9.6 GHz"
散射中心 | 部件号 | 散射机理 | RCSdBsm | 频率依赖参数α | 位置参数(x, y, z) |
1 | 49-13 | 二面角 | -2.620 792 87 | 1 | (-3.625 59 0.153 1 0.647 878) |
2 | 16 | 圆柱面 | -3.225 884 88 | 0.5 | (-2.460 85 -0.996 47 -0.138 545) |
3 | 23 | 圆柱面 | -3.338 150 72 | 0.5 | (2.595 48 -0.817 402 1.234 72) |
4 | 11 | 二面角 | -9.168 391 29 | 1 | (3.042 61 -1.242 -0.379 252) |
5 | 21-13 | 二面角 | -6.538 622 05 | 1 | (3.079 77 -0.257 114 1.165 2) |
1 | DIEMUNSCH J R, WISSINGER J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: search technology for a robust ATR[C]//Proc. of the Algorithms for Synthetic Aperture Radar Imagery V. International Society for Optics and Photonics, 1998. |
2 | ROSS T D , BRADLEY J J , O'CONNOR M P . SAR ATR: so what's the problem? An MSTAR perspective[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1999, 3721 (30): 606- 610. |
3 | HUMMEL R. Model-based ATR using synthetic aperture radar[C]//Proc. of the Radar Conference, 2000. |
4 | DOUGLAS J, BURKE M, ETTINGER G J. High-resolution SAR ATR performance analysis[C]//Proc. of the International Society for Optical Engineering, 2004: 5427. |
5 |
HUNG C , CHIAN G , MOSE S , et al. Model-based classification of radar images[J]. IEEE Trans.on Information Theory, 2000, 46 (5): 1842- 1854.
doi: 10.1109/18.857795 |
6 | MARTORELLA M , GIUSTI E , DEMI L , et al. Target recognition by means of polarimetric ISAR images[J]. IEEE Trans.on Aerospace & Electronic Systems, 2011, 47 (1): 225- 239. |
7 | KEY D L E R, LEE SW. Signature prediction for model-based automatic target recognition[C]//Proc. of the International Society for Optical Engineering, 1996. |
8 |
GERRY M J , POTTER L C , GUPTAI J , et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Trans.on Antennas and Propagation, 1999, 47 (7): 1179- 1188.
doi: 10.1109/8.785750 |
9 | MOSESR L . Feature extraction using attributed scattering center models on SAR imagery[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3721, 104- 115. |
10 | KOETS M A, MOSES R L. Image domain feature extraction from synthetic aperture imagery[C]//Proc. of the IEEE International Conference on Acoustics, 1999. |
11 | AKYILDIZ Y, MOSESO L. Scattering center model for SAR imagery[C]//Proc. of the International Society for Optical Engineering, 1999: 3869. |
12 | LIU H , JIU B , LI F , et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Trans.on Antennas & Propagation, 2017, 65 (5): 2604- 2614. |
13 | CHIANG H C, MOSES R L, IRVING W W. Performance estimation of model-based automatic target recognition using attributed scattering center features[C]//Proc. of the 10th International Conference on Image Analysis and Processing, 1999: 27-29. |
14 |
BHALLA R , LING H . Three-dimensional scattering center extraction using the shooting and bouncing ray technique[J]. IEEE Trans.on Antennas and Propagation, 1996, 44 (11): 1445- 1453.
doi: 10.1109/8.542068 |
15 | BHALLA R , MOORE J , HAO L . A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Trans.on Antennas & Propagation, 1997, 45 (12): 1850- 1856. |
16 | BHALLA R , LING H . 3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review[J]. IEEE Antennas & Propagation Magazine, 1998, 40 (5): 30- 39. |
17 | ZHOU J , ZHAO H , SHI Z , et al. Global scattering center model extraction of radar targets based on wideband measurements[J]. IEEE Transactions on Antennas & Propagation, 2008, 56 (7): 2051- 2060. |
18 |
JIANXIONG Z , ZHIGUANG S , XIAO C , et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (10): 3713- 3729.
doi: 10.1109/TGRS.2011.2162526 |
19 | JACKSON J A , RIGLING B D , MOSES R L . Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Trans.on Aerospace & Electronic Systems, 2010, 46 (2): 525- 541. |
20 | FULLER D F , SAVILLE M A . A high-frequency multipeak model for wide-angle SAR Imagery[J]. IEEE Trans.on Geo-science & Remote Sensing, 2013, 51 (7): 4279- 4291. |
21 | ZHU J , TAN S , KING J , et al. Forward and inverse radar modeling of terrestrial snow using snow SAR data[J]. IEEE Trans.on Geoscience and Remote Sensing, 5018, 56 (12): 7122- 7132. |
22 |
KELLER J B . Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52 (2): 116.
doi: 10.1364/JOSA.52.000116 |
23 |
YANG H , HE S Y , ZHANG Y H , et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (12): 6192- 6205.
doi: 10.1109/TAP.2014.2360700 |
24 |
DING B , WEN G , HUANG X , et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (7): 3334- 3347.
doi: 10.1109/JSTARS.2017.2671919 |
25 | DING B , WEN G , ZHONG J , et al. A robust similarity mea-sure for attributed scattering center sets with application to SAR ATR[J]. Neurocomputing, 2017, 219 (1): 130- 143. |
26 |
DING B , WEN G , HUANG X , et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (6): 979- 983.
doi: 10.1109/LGRS.2017.2692386 |
27 | DING B , WEN G , MA C , et al. Decision fusion based on physically relevant features for SAR ATR[J]. IET Radar Sonar & Navigation, 2017, 11 (4): 682- 690. |
28 |
DING B , WEN G , ZHONG J , et al. Robust method for the matching of attributed scattering centers with application to synthetic aperture radar automatic target recognition[J]. Journal of Applied Remote Sensing, 2016, 10 (1): 016010.
doi: 10.1117/1.JRS.10.016010 |
29 | TOUZI R . A review of speckle filtering in the context of estimation theory[J]. IEEE Trans.on Geoscience & Remote Sensing, 2003, 40 (11): 2392- 2404. |
30 |
CHEN S Z , PENG H . Target classification using the deep convolutional networks for SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (8): 4806- 4817.
doi: 10.1109/TGRS.2016.2551720 |
[1] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[2] | 袁文杰, 郭琨毅, 盛新庆, 金从军. 基于电流相位特性的滑动散射中心建模方法[J]. 系统工程与电子技术, 2022, 44(6): 1765-1771. |
[3] | 孙晶明, 虞盛康, 孙俊. 基于元学习的雷达小样本目标识别方法及改进[J]. 系统工程与电子技术, 2022, 44(6): 1839-1845. |
[4] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[5] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[6] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[7] | 刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44(11): 3346-3356. |
[8] | 王彩云, 姚晨, 吴钇达, 王佳宁, 李晓飞, 黄盼盼. 基于改进Dijkstra算法与时频域滤波的雷达目标识别[J]. 系统工程与电子技术, 2022, 44(10): 3090-3095. |
[9] | 关欣, 于昊天, 衣晓. 证据独立性及其对目标识别的影响研究[J]. 系统工程与电子技术, 2022, 44(1): 192-198. |
[10] | 邢笑宇, 霍超颖, 殷红成, 王静. 基于光电融合的目标三维结构反演[J]. 系统工程与电子技术, 2021, 43(9): 2392-2399. |
[11] | 陆金文, 闫华, 张磊, 殷红成. 基于弹跳射线技术的三维GTD模型构建方法[J]. 系统工程与电子技术, 2021, 43(8): 2028-2036. |
[12] | 徐嘉华, 张小宽, 郑舒予, 宗彬锋, 张敬伟. 基于改进正交匹配追踪算法的属性散射中心提取[J]. 系统工程与电子技术, 2021, 43(8): 2076-2082. |
[13] | 李永祯, 刘业民, 庞晨, 黄大通. 基于分层极化特性的箔条云识别方法[J]. 系统工程与电子技术, 2021, 43(8): 2099-2107. |
[14] | 谢春思, 刘志赢, 桑雨. 基于特征匹配的舰载对陆导弹目标识别模型[J]. 系统工程与电子技术, 2021, 43(8): 2244-2253. |
[15] | 晏媛, 孙俊, 孙晶明, 于俊朋. 雷达小样本目标识别方法及应用分析[J]. 系统工程与电子技术, 2021, 43(3): 684-692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||