1 |
LIU X , LIN S B , FANG J , et al. Is extreme learning machine feasible? A theoretical assessment(Part Ⅰ)[J]. IEEE Trans.on Neural Networks and Learning Systems, 2015, 26 (1): 7- 20.
doi: 10.1109/TNNLS.2014.2335212
|
2 |
LIU X , LIN S B , FANG J , et al. Is extreme learning machine feasible? A theoretical assessment (Part Ⅱ)[J]. IEEE Trans.on Neural Networks and Learning Systems, 2015, 26 (1): 21- 34.
doi: 10.1109/TNNLS.2014.2336665
|
3 |
ZHAO L , ZHU J . Learning from correlation with extreme learning machine[J]. Tsinghua Science and Technology, 2019, 10 (12): 3635- 3645.
doi: 10.1007/s13042-019-00949-y
|
4 |
RAFAELA C , FREITAS D , JANDERSON F , et al. Gauss-Seidel extreme learning machines[J]. SN Computer Science, 2020, 1 (4): 220- 248.
doi: 10.1007/s42979-020-00232-w
|
5 |
CUI D S, HU K, ZHANG G H, et al. Target coding for extreme learning machine[C]//Proc. of the ELM-2017, 2019, 10: 292-303.
|
6 |
CUI Y X, ZHAI H J, WANG X Z. Extreme learning machine based on cross entropy[C]//Proc. of the International Confe-rence on Machine Learning and Cybernetics (ICMLC), 2016: 1066-1071.
|
7 |
JIANG M C , PAN Z , LI N S . Multi-label text categorization using L21-norm minimization extreme learning machine[J]. Neurocomputing, 2017, 261, 4- 10.
doi: 10.1016/j.neucom.2016.04.069
|
8 |
ISMAIL N , OTHMAN Z A , SAMSUDIN N A . Regularization activation function for extreme learning machine[J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (3): 241- 248.
|
9 |
XU R , LIANG X , QI J S , et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42 (7): 1640- 1670.
|
10 |
LU J J , HUANG J Q , LU F . Sensor fault diagnosis for aero engine based on ovine sequential extreme learning machine with memory principle[J]. Energies, 2017, 10 (1): 39- 53.
doi: 10.3390/en10010039
|
11 |
MAO W T , HE L , YAN Y J , et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems & Signal Processing, 2016, 83, 450- 473.
|
12 |
ZHANG H S , LU H . Augmented quaternion extreme learning machine[J]. IEEE Access, 2019, 7, 90842- 90850.
doi: 10.1109/ACCESS.2019.2925893
|
13 |
SALMAN H . Text classification based on weighted extreme learning machine[J]. Ibn AL-Haitham Journal for Pure and Applied Science, 2019, 32 (1): 203.
doi: 10.30526/32.1.1978
|
14 |
LIANG N Y , HUANG G B , SARATCHANDRAN P , et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Trans.on Neural Networks, 2006, 17 (6): 1411- 1423.
doi: 10.1109/TNN.2006.880583
|
15 |
WANG X Y , HAN M . Online sequential extreme learning machine with kernels for nonstationary time series prediction[J]. Neurocomputing, 2014, 145, 90- 97.
doi: 10.1016/j.neucom.2014.05.068
|
16 |
GUO L , HAO J H , LIU M . An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128, 50- 58.
doi: 10.1016/j.neucom.2013.03.055
|
17 |
SOARES S G , ARAUJO R . An adaptive ensemble of online extreme learning machines with variable forgetting factor for dynamic system prediction[J]. Neurocomputing, 2016, 171, 693- 707.
doi: 10.1016/j.neucom.2015.07.035
|
18 |
ZHAO J W , WANG Z H , PARK D S . Online sequential extreme learning machine with forgetting mechanism[J]. Neurocomputing, 2012, 87, 79- 89.
doi: 10.1016/j.neucom.2012.02.003
|
19 |
ZHOU X R , LIU Z J , ZHU C X . Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014, 938548.
|
20 |
ZHOU X R , WANG C S . Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Neurocomputing, 2016, 174, 1147- 1155.
doi: 10.1016/j.neucom.2015.10.033
|
21 |
MAO W T , WANG J W , WANG L Y , et al. Online sequential prediction for nonstationary time series with new weight-setting strategy using extreme learning machine[J]. Mathematical Problems in Engineering, 2015, 484093.
|
22 |
WANG X Y , HAN M . Improved extreme learning machine for multivariate time series online sequential prediction[J]. Engineering Applications of Artificial Intelligence, 2015, 40, 28- 36.
doi: 10.1016/j.engappai.2014.12.013
|
23 |
HUANG G B , CHEN L , SIEW C K. , et al. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Trans.on Neural Networks, 2006, 17 (4): 879- 892.
doi: 10.1109/TNN.2006.875977
|
24 |
HUANG G B , CHEN L . Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71 (16): 3460- 3468.
|
25 |
FENG G , HUANG G B , LIN Q . Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Trans.on neural networks, 2009, 20 (8): 1352- 1357.
doi: 10.1109/TNN.2009.2024147
|
26 |
YE Y B , QIN Y . QR factorization based incremental extreme learning machine with growth of hidden nodes[J]. Pattern Recog- nition Letters, 2015, 65, 177- 183.
doi: 10.1016/j.patrec.2015.07.031
|
27 |
HUANG G B , CHEN L . Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70 (16/18): 3056- 3062.
|
28 |
ZHAO Z T , CHEN Z Y , CHEN Y Q . A class incremental extreme learning machine for activity recognition[J]. Cognitive Computation, 2014, 6 (3): 423- 431.
doi: 10.1007/s12559-014-9259-y
|
29 |
王诗琦, 赵书敏. 变长增量型极限学习机及其泛化性能研究[J]. 系统工程理论与实践, 2016, 39 (12): 2716- 2720.
|
|
WANG S Q , ZHAO S M . Research of variable length incremental extreme learning machine and generalization perfor-mance[J]. Application Research of Computers Practice, 2016, 39 (12): 2716- 2720.
|
30 |
PHOUNGPHO P , ZHANG Y , ZHAO Y C . Robust multiclass classification for learning from imbalanced biomedical data[J]. Tsinghua Science and Technology, 2012, 17 (6): 619- 628.
doi: 10.1109/TST.2012.6374363
|