系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2628-2636.doi: 10.12305/j.issn.1001-506X.2021.09.32

• 通信与网络 • 上一篇    下一篇

基于Stacked-TCN的空间混叠信号单通道盲源分离方法

赵孟晨1,2, 姚秀娟2,*, 王静2, 董苏惠1,2   

  1. 1. 中国科学院国家空间科学中心, 北京 100190
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2020-10-12 出版日期:2021-08-20 发布日期:2021-08-26
  • 通讯作者: 姚秀娟
  • 作者简介:赵孟晨(1996—), 女, 硕士研究生,主要研究方向为盲源分离、信号处理、机器学习与深度学习。|姚秀娟(1977—), 女, 研究员, 博士研究生导师, 博士, 主要研究方向为空间频谱感知、空间频率规划与干扰仿真技术|王静(1990—), 女, 博士后, 主要研究方向为空间频谱感知、高动态时空干扰规避技术|董苏惠(1994—), 女, 博士研究生, 主要研究方向为空间互联网干扰仿真技术
  • 基金资助:
    中国科学院空间科学战略性先导科技专项(XDA15060100);中国科学院战略高技术创新基金(GQRC-19-14)

Single-channel blind source separation method of spatial aliasing signal based on Stacked-TCN

Mengchen ZHAO1,2, Xiujuan YAO2,*, Jing WANG2, Suhui DONG1,2   

  1. 1. School of Electronic and Communication Engineering, University of Chinese Academy of Sciences Beijing 100049, China
    2. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-10-12 Online:2021-08-20 Published:2021-08-26
  • Contact: Xiujuan YAO

摘要:

针对空间互联网星地通信场景中的混叠信号分离精度不足问题, 提出了基于深度学习的堆叠时域卷积网络(stacked time-domain convolutional network, Stacked-TCN)分离方法。首先, 对混合信号提取编码特征表示。然后, 通过时域卷积网络训练得到源信号的深层特征掩模, 将每个信号源的掩模与混合信号编码特征做Hadamard乘积, 得到源信号的编码特征表示。最后, 使用1-D卷积, 对源信号特征进行解码, 得到原始波形。实验采用负的比例不变信噪比作为网络训练的损失函数, 即单通道盲源分离性能的评价指标。结果表明, Stacked-TCN方法与其他4种算法相比, 所提方法具有更好的分离精度和噪声鲁棒性。

关键词: 欠定盲源分离, 同频干扰, 单通道, 时域卷积网络

Abstract:

Aiming at the problem of insufficient separation accuracy of aliased signals in space Internet satellite ground communication scene, a stacked time domain convolutional network (Stacked-TCN) separation method based on deep learning is proposed. Firstly, the coding feature representation is extracted from the mixed signal. Then, the deep feature mask of the source signal is trained through the time-domain convolution network. The mask of each signal source and the coding feature of the mixed signal are multiplied by Hadamard to obtain the coding feature representation of the source signal. Finally, 1-D convolution is used to decode the characteristics of the source signal to obtain the original waveform. In the experiment, the negative scale invariant source to noise ratio is used as the loss function of network training, that is, the evaluation index of single channel blind source separation performance. The results show that the Stacked-TCN method has better separation accuracy and noise robustness than the other four algorithms.

Key words: underdetermined blind source separation, co-frequency interference, single channel, time-domain convolutional network (TCN)

中图分类号: