系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2628-2636.doi: 10.12305/j.issn.1001-506X.2021.09.32
赵孟晨1,2, 姚秀娟2,*, 王静2, 董苏惠1,2
收稿日期:
2020-10-12
出版日期:
2021-08-20
发布日期:
2021-08-26
通讯作者:
姚秀娟
作者简介:
赵孟晨(1996—), 女, 硕士研究生,主要研究方向为盲源分离、信号处理、机器学习与深度学习。|姚秀娟(1977—), 女, 研究员, 博士研究生导师, 博士, 主要研究方向为空间频谱感知、空间频率规划与干扰仿真技术|王静(1990—), 女, 博士后, 主要研究方向为空间频谱感知、高动态时空干扰规避技术|董苏惠(1994—), 女, 博士研究生, 主要研究方向为空间互联网干扰仿真技术
基金资助:
Mengchen ZHAO1,2, Xiujuan YAO2,*, Jing WANG2, Suhui DONG1,2
Received:
2020-10-12
Online:
2021-08-20
Published:
2021-08-26
Contact:
Xiujuan YAO
摘要:
针对空间互联网星地通信场景中的混叠信号分离精度不足问题, 提出了基于深度学习的堆叠时域卷积网络(stacked time-domain convolutional network, Stacked-TCN)分离方法。首先, 对混合信号提取编码特征表示。然后, 通过时域卷积网络训练得到源信号的深层特征掩模, 将每个信号源的掩模与混合信号编码特征做Hadamard乘积, 得到源信号的编码特征表示。最后, 使用1-D卷积, 对源信号特征进行解码, 得到原始波形。实验采用负的比例不变信噪比作为网络训练的损失函数, 即单通道盲源分离性能的评价指标。结果表明, Stacked-TCN方法与其他4种算法相比, 所提方法具有更好的分离精度和噪声鲁棒性。
中图分类号:
赵孟晨, 姚秀娟, 王静, 董苏惠. 基于Stacked-TCN的空间混叠信号单通道盲源分离方法[J]. 系统工程与电子技术, 2021, 43(9): 2628-2636.
Mengchen ZHAO, Xiujuan YAO, Jing WANG, Suhui DONG. Single-channel blind source separation method of spatial aliasing signal based on Stacked-TCN[J]. Systems Engineering and Electronics, 2021, 43(9): 2628-2636.
表3
dB混合信号下不同算法的损失值"
混合信号 | 算法 | ||||
Stacked-TCN | TasNet | Wave-U-Net | ICA | NMF | |
BPSK_8PSK | -22.51 | -2.94 | -17.22 | 5.36 | 9.92 |
BPSK_16QAM | -18.71 | -4.06 | -17.02 | 1.64 | 6.32 |
BPSK_64QAM | -22.83 | -1.44 | -19.08 | 6.02 | 8.72 |
BPSK_PAM4 | -28.44 | -2.35 | -12.09 | 5.92 | 8.19 |
8PSK_16QAM | -13.00 | -3.63 | -13.55 | 4.87 | 9.82 |
8PSK_64QAM | -5.96 | -1.98 | -11.31 | 1.07 | 7.67 |
8PSK_PAM4 | -15.64 | -1.95 | -18.67 | 2.68 | 6.13 |
16QAM_64QAM | -6.32 | -2.51 | -1.51 | 5.48 | 8.73 |
16QAM_PAM4 | -21.61 | -2.25 | -17.31 | 5.32 | 7.79 |
64QAM_PAM4 | -5.53 | -2.36 | -11.92 | 2.50 | 5.98 |
平均值 | -16.05 | -2.55 | -13.97 | 4.09 | 7.93 |
1 |
肖楠, 梁俊, 王伟, 等. 卫星认知无线网络中频谱感知与分配策略设计[J]. 中南大学学报(自然科学版), 2015, 46 (12): 4520- 4528.
doi: 10.11817/j.issn.1672-7207.2015.12.019 |
XIAO N , LIANG J , WANG W , et al. Design of spectrum sensing and allocating strategy forsatellite cognitive radio networks[J]. Journal of Central South University (Science and Technology), 2015, 46 (12): 4520- 4528.
doi: 10.11817/j.issn.1672-7207.2015.12.019 |
|
2 |
蒋丽丽, 陈国彬, 张广泉. 认知无线电网络中基于盲源分离的频谱检测算法[J]. 中国科技论文, 2017, 12 (8): 868- 872.
doi: 10.3969/j.issn.2095-2783.2017.08.005 |
JIANG L L , CHEN G B , ZHANG G Q . Blind source separation-based spectrum sensing in congnitive radio networks[J]. China Science Paper, 2017, 12 (8): 868- 872.
doi: 10.3969/j.issn.2095-2783.2017.08.005 |
|
3 | 杨柳, 张杭. 通信中的盲源分离问题及解决方案探讨[J]. 通信技术, 2014, 47 (1): 1- 6. |
YANG L , ZHANG H . Discussion of blind source separation problem andits solution in communication[J]. Communications Technology, 2014, 47 (1): 1- 6. | |
4 |
LI C , ZHU L , LUO Z . Underdetermined blind source separation of adjacent satellite interference based on sparseness[J]. China Communications, 2017, 14 (4): 140- 149.
doi: 10.1109/CC.2017.7927572 |
5 | LI Y , WANG Y , DONG Q . A novel mixing matrix estimation algorithm in instantaneous under-determined blind source separation[J]. Signal Image and Video Processing, 2020, 14 (5): 1- 8. |
6 |
XIE Y , XIE K , XIE S . Underdetermined blind source separation for heart sound using higher-order statistics and sparse representation[J]. IEEE Access, 2019, 7, 87606- 87616.
doi: 10.1109/ACCESS.2019.2925896 |
7 |
DAVIES M E , JAMES C J . Source separation using single channel ICA[J]. Signal Processing, 2007, 87 (8): 1819- 1832.
doi: 10.1016/j.sigpro.2007.01.011 |
8 |
BOFILL P , ZIBULEVSKY M . Underdetermined blind source separation using sparse representations[J]. Signal Processing, 2001, 81 (11): 2353- 2362.
doi: 10.1016/S0165-1684(01)00120-7 |
9 | ISIK Y, ROUX J L, CHEN Z, et al. Single-channel multi-speaker separation using deep clustering[EB/OL]. [2020-10-05]. http://arXiv.org/abs/1607.02173. |
10 | YU D, KOLBAEK M, TAN Z H, et al. Permutation invariant training of deep models for speaker-independent multi-talker speech separation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 241-245. |
11 |
KOLBAEK M , YU D , TAN Z H , et al. Multi-talker speech separation with utterance-level permutation invariant training of deep recurrent neural networks[J]. IEEE Trans.on Audio Speech and Language Processing, 2017, 25 (10): 1901- 1913.
doi: 10.1109/TASLP.2017.2726762 |
12 | DO H D , TRAN S T , CHAU D T . Speech separation in the frequency domain with autoencoder[J]. Journal of Communications, 2020, 15 (11): 841- 848. |
13 | YOSHⅡ K, TOMIOKA R, MOCHIHASHI D, et al. Beyond NMF: time-domain audio source separation without phase reconstruction[C]//Proc. of the International Society for Music Information Retrieval, 2013: 369-374. |
14 |
FÉVOTTE C , IDIER J . Algorithms for nonnegative matrix factorization with the β-divergence[J]. Neural computation, 2011, 23 (9): 2421- 2456.
doi: 10.1162/NECO_a_00168 |
15 | 何继爱, 宋宇霄. Kalman滤波下的多信号单通道盲源分离[J]. 信号处理, 2018, 34 (7): 843- 851. |
HE J A , SONG Y X . Blind source separation of the multi-signal single channelbased on Kalman filtering[J]. Signal Processing, 2018, 34 (7): 843- 851. | |
16 |
何继爱, 刘琳芝, 李英堂. LCL-FRESH滤波器实现单通道盲源分离[J]. 信号处理, 2014, 30 (2): 236- 242.
doi: 10.3969/j.issn.1003-0530.2014.02.015 |
HE J A , LIU L Z , LI Y T . Single-channel blind source separation achieved by the LCL-FRESH filter[J]. Signal Processing, 2014, 30 (2): 236- 242.
doi: 10.3969/j.issn.1003-0530.2014.02.015 |
|
17 |
宋阳, 王翔, 马忠正, 等. CFE条件下基于循环维纳滤波的单通道分离算法[J]. 中国电子科学研究院学报, 2014, 9 (2): 186- 193.
doi: 10.3969/j.issn.1673-5692.2014.02.014 |
SONG Y , WANG X , MA Z Z , et al. Single channel signals separation algorithm based oncyclostationary filtering under CFE correction[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9 (2): 186- 193.
doi: 10.3969/j.issn.1673-5692.2014.02.014 |
|
18 |
LUO Y , MESGARANI N . Conv-TasNet: surpassing ideal time-frequency magnitude masking for speech separation[J]. IEEE Trans.on Audio, Speech, and Language Processing, 2019, 27 (8): 1256- 1266.
doi: 10.1109/TASLP.2019.2915167 |
19 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258. |
20 | LUO Y, CHEN Z, YOSHIOKA T. Dual-path RNN: efficient long sequence modeling for time-domain single-channel speech separation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 46-50. |
21 | SHI Z, LIU R, HAN J. La furca: iterative context-aware end-to-end monaural speech separation based on dual-path deep parallel inter-intra bil-STM with attention[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2001.08998. |
22 | SUBAKAN C, RAVANELLI M, CORNELL S, et al. Attention is all you need in speech separation[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2010.13154. |
23 |
HENNEQUIN R , KHLIF A , VOITURET F , et al. Spleeter: a fast and efficient music source separation tool with pre-trained models[J]. Journal of Open Source Software, 2020, 5 (50): 2154.
doi: 10.21105/joss.02154 |
24 | HAN C, LUO Y, LI C, et al. Continuous speech separation using speaker inventory for long multi-talker recording[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2012.09727. |
25 | FAN C, TAO J, LIU B, et al. Deep attention fusion feature for speech separation with end-to-end post-filter method[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2003.07544. |
26 | LIU Y, DELFARAH M, WANG D L. Deep CASA for talker-independent monaural speech separation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 6354-6358. |
27 | NGUYEN V N, SADEGHI M, RICCI E, et al. Deep variational generative models for audio-visual speech separation[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2008.07191. |
28 | SHI J, XU J, FUJITA Y, et al. Speaker-conditional chain model for speech separation and extraction[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2006.14149. |
29 |
WANG D L , CHEN J . Supervised speech separation based on deep learning: an overview[J]. IEEE Trans.on Audio, Speech, and Language Processing, 2018, 26 (10): 1702- 1726.
doi: 10.1109/TASLP.2018.2842159 |
30 | ZHAO J, GAO S, SHINOZAKI T. Time-domain target-speaker speech separation with waveform-based speaker embedding[C]//Proc. of the Interspeech, 2020: 1436-1440. |
31 | LUO Y, HAN C, MESGARANI N. Ultra-lightweight speech separation via group communication[EB/OL]. [2020-10-05]. http://arXiv.org/abs/2011.08397. |
32 | ZHANG L, SHI Z, HAN J, et al. FurcaNeXt: End-to-end monaural speech separation with dynamic gated dilated temporal convolutional networks[C]//Proc. of the International Conference on Multimedia Modeling, 2020: 653-665. |
33 | KAVALEROV I, WISDOM S, ERDOGAN H, et al. Universal sound separation[C]//Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2019: 175-179. |
34 | PRÉTET L, HENNEQUIN R, ROYO-LETELIER J, et al. Singing voice separation: a study on training data[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 506-510. |
35 | LUO Y, HAN C, MESGARANI N, et al. FaSNet: low-latency adaptive beamforming for multi-microphone audio processing[C]//Proc. of the IEEE Automatic Speech Recognition and Understanding Workshop, 2019: 260-267. |
36 | LLUÍS F, PONS J, SERRA X. End-to-end music source separation: is it possible in the waveform domain?[EB/OL]. [2020-10-05]. http://arXiv.org/abs/1810.12187. |
37 | BAHMANINEZHAD F, WU J, GU R, et al. A comprehensive study of speech separation: spectrogram vs waveform separation[EB/OL]. [2020-10-05]. http://arXiv.org/abs/1905.07497. |
38 | XU C, RAO W, XIAO X, et al. Single channel speech separation with constrained utterance level permutation invariant training using grid LSTM[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2018: 6-10. |
39 | O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226. |
40 | XIONG R, YANG Y, HE D, et al. On layer normalization in the transformer architecture[C]//Proc. of the International Conference on Machine Learning, 2020: 10524-10533. |
41 | KHAN Z Y , NIU Z . CNN with depthwise separable convolutions and combined kernels for rating prediction[J]. Expert Systems with Applications, 2020, 170, 114528. |
42 | ISIK Y, ROUX J L, CHEN Z, et al. Single-channel multi-speaker separation using deep clustering[EB/OL]. [2020-10-05]. http://arXiv.org/abs/1607.02173. |
43 | 王少波, 郭英, 眭萍, 等. 欠定条件下同步组网跳频信号盲源分离方法[J]. 计算机工程, 2020, 46 (10): 166- 172, 181. |
WANG S B , GUO Y , SUI P , et al. Under-determined blind source separation method for synchronous network frequency-hopping signals[J]. Computer Engineering, 2020, 46 (10): 166- 172, 181. | |
44 |
赵知劲, 黄艳波. 基于小波包分解的单通道盲源分离算法[J]. 通信技术, 2017, 50 (3): 425- 429.
doi: 10.3969/j.issn.1002-0802.2017.03.007 |
ZHAO Z J , HUANG Y B . Single-channel blind-source separation algorithm based on wavelet packetdecomposition[J]. Communications Technology, 2017, 50 (3): 425- 429.
doi: 10.3969/j.issn.1002-0802.2017.03.007 |
|
45 |
郭一鸣, 杨勇, 张冬玲, 等. 基于SIC的单通道同频混合信号低复杂度盲分离算法[J]. 信号处理, 2015, 31 (7): 860- 866.
doi: 10.3969/j.issn.1003-0530.2015.07.014 |
GUO Y M , YANG Y , ZHANG D L , et al. Blind separation algorithm of single-channel co-frequencysignals with low complexity based on SIC[J]. Signal Processing, 2015, 31 (7): 860- 866.
doi: 10.3969/j.issn.1003-0530.2015.07.014 |
|
46 |
张建中, 文树梁, 谭澄, 等. 盲源分离联合阻塞矩阵抗雷达主瓣干扰研究[J]. 现代防御技术, 2018, 46 (1): 135- 140.
doi: 10.3969/j.issn.1009-086x.2018.01.022 |
ZHANG J Z , WEN S L , TAN C , et al. Radar main-lobe jamming suppression based on the method of BSS-BM union[J]. Modern Defense Technology, 2018, 46 (1): 135- 140.
doi: 10.3969/j.issn.1009-086x.2018.01.022 |
|
47 | WENINGER F, ROUX J L, HERSHEY J R, et al. Discriminative NMF and its application to single-channel source separation[C]//Proc. of the 15th Annual Conference of the International Speech Communication Association, 2014: 865-869. |
48 | LUO Y, MESGARANI N. Tasnet: time-domain audio separation network for real-time, single-channel speech separation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2018: 696-700. |
49 | STOLLER D, EWERT S, DIXON S. Wave-u-net: a multi-scale neural network for end-to-end audio source separation[EB/OL]. [2020-10-05]. http://arXiv.org/abs/1806.03185. |
[1] | 夏栋, 张凯旋, 丁友宝, 李宝鹏. 基于相位编码波形捷变和CFAR技术的抗同频干扰[J]. 系统工程与电子技术, 2022, 44(4): 1210-1219. |
[2] | 季策, 张晓梦. 基于MS-ROMP信号重构算法的欠定盲分离[J]. 系统工程与电子技术, 2020, 42(4): 756-763. |
[3] | 季策, 穆文欢, 耿蓉. 基于A-DBSCAN的欠定盲源分离算法[J]. 系统工程与电子技术, 2020, 42(12): 2676-2683. |
[4] | 朱晓丹, 朱伟强, 陈卓. 基于TOA变化率有偏估计的单通道无源定位[J]. 系统工程与电子技术, 2019, 41(7): 1459-1467. |
[5] | 黄炎揆, 高勇. MPSK混合信号逐步消除前向干扰的单通道盲分离PSP算法[J]. 系统工程与电子技术, 2018, 40(9): 2106-2112. |
[6] | 付君, 彭华, 杨勇. 单通道混合信号的深度联合分离译码算法[J]. 系统工程与电子技术, 2018, 40(6): 1378-1384. |
[7] | 卢志忠, 周颖, 黄玉. 空间域相关法抗X波段航海雷达同频干扰[J]. 系统工程与电子技术, 2017, 39(4): 758-767. |
[8] | 唐宁, 郭英, 张坤峰. 基于SCA的欠定跳频网台分选方法[J]. 系统工程与电子技术, 2017, 39(12): 2817-2823. |
[9] | 朱行涛, 刘郁林, 何为, 晁志超. 基于变换域滤波的直扩通信单通道混合信号分离抗干扰方法[J]. 系统工程与电子技术, 2016, 38(10): 2405-2412. |
[10] | 张学攀, 廖桂生, 朱圣棋, 杨东, 高永婵. 单通道干涉相位无模糊估计快速动目标速度[J]. 系统工程与电子技术, 2014, 36(9): 1717-1724. |
[11] | 郭一鸣, 杨勇, 张冬玲, 彭华. 单通道同频混合信号时延高效估计方法[J]. 系统工程与电子技术, 2014, 36(7): 1416-1421. |
[12] | 付卫红,李爱丽,马丽芬,黄坤,严新. 基于估计参数势函数法的欠定盲分离[J]. 系统工程与电子技术, 2014, 36(4): 619-623. |
[13] | 张祖凡,李余,杨静,景小荣. 结合三角分解和SLNR的同频干扰抑制算法[J]. 系统工程与电子技术, 2014, 36(1): 167-172. |
[14] | 张峰干,贾维敏,金伟,朱墨. 基于同时扰动的单通道接收阵列天线跟踪方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1085-1090. |
[15] | 毕晓君, 宫汝江. 基于混合聚类和网格密度的欠定盲矩阵估计[J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 614-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||