系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2562-2572.doi: 10.12305/j.issn.1001-506X.2021.09.24

• 系统工程 • 上一篇    下一篇

无人机自组网中基于蚁群优化的多态感知路由算法

孙明杰1,2,*, 周林1, 于云龙1, 顾金玲3   

  1. 1. 空军工程大学防空反导学院, 陕西 西安 710051
    2. 中国人民解放军93861部队, 陕西 咸阳713800
    3. 中国人民解放军32272部队, 甘肃 兰州 730060
  • 收稿日期:2020-11-30 出版日期:2021-08-20 发布日期:2021-08-26
  • 通讯作者: 孙明杰
  • 作者简介:孙明杰(1982—), 男, 助理工程师, 博士研究生,主要研究方向为装备基础理论研究|周林(1965—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为装备基础理论研究、装备保障需求论证|于云龙(1991—), 男, 博士研究生, 主要研究方向为装备基础理论研究|顾金玲(1989—), 女, 硕士研究生, 主要研究方向为装备基础理论研究
  • 基金资助:
    陕西省自然科学基础研究计划(2019JQ-708)

Ant colony optimization based polymorphism-aware routing algorithm for AdHoc UAV network

Mingjie SUN1,2,*, Lin ZHOU1, Yunlong YU1, Jinling GU3   

  1. 1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
    2. Unit 93861 of the PLA, Xianyang 713800, China
    3. Unit 32272 of the PLA, Lanzhou 730060, China
  • Received:2020-11-30 Online:2021-08-20 Published:2021-08-26
  • Contact: Mingjie SUN

摘要:

无人机自组织网络具有节点移动性强、网络拓扑变化快、数据交互频繁、应用环境复杂等特点, 采用传统的路由算法会使该网络在传输延时、丢包率、路由开销等方面性能均较差, 以至于无法为多无人机协同执行任务提供有效的通信保障。为了解决该问题, 提出一种基于蚁群优化的多态感知路由(ant colony optimization based polymorphism-aware routing, APAR)算法。该算法将蚁群算法与动态源路由算法相结合, 通过感知路径长度、路径拥塞度和路径稳定性, 计算出由路由发现过程得到路径的信息素水平, 并将其作为选路标准, 经过改进的信息素挥发机制也被引入该算法。同时, 根据无人机编队的变化做出合适的调整, 以保证其网络性能不下降。仿真结果表明, 与其他经典算法相比, APAR算法提高了数据包成功传输率, 降低了平均端到端延时, 减少了路由开销, 且在战场环境下有较高的可靠性。

关键词: 无人机自组织网络, 蚁群算法, 动态源路由算法, 多态感知, 路径拥塞度, 路径稳定性

Abstract:

AdHoc unmanned aerial vehicle (UAV) network is characterized for its high node mobility, fast changing network topology, high frequency of interchanging data and complex application environment. The performances of traditional routing algorithms are so bad over aspects such as transmitting delay, packet loss rate and routing overhead that they cannot provide efficient communication for multi-UAVs carrying out missions synergistically. To solve the problems, an ant colony optimization based polymorphism-aware routing (APAR) algorithm is proposed. This algorithm integrates ant colony optimization algorithm and dynamic source routing algorithm, and the level of pheromone in routes, which are gained in routing discovery process, is chosen as a standard to choose route and calculated by sensing the distance, the congestion level, and the stability of a route. A new volatilization mechanism of pheromone is also introduced to the algorithm. Meanwhile, the algorithm can make adjustment to the variance of UAV formation to prevent the compromise of the network performance. The simulation results show that compared with traditional algorithms the APAR algorithm improves the data packet transmission ratio, reduces the average end to end delay, reduces the routing overhead and has reliability in battlefield environment.

Key words: AdHoc unmanned aerial vehicle (UAV) network, ant colony algorithm, dynamic source routing algorithm, polymorphism-aware, congestion level of route, stability of route

中图分类号: