系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2493-2500.doi: 10.12305/j.issn.1001-506X.2021.09.16
曹鹏宇1,*, 杨承志1, 石礼盟2, 吴宏超1
收稿日期:
2021-01-08
出版日期:
2021-08-20
发布日期:
2021-08-26
通讯作者:
曹鹏宇
作者简介:
曹鹏宇(1997—), 男, 硕士研究生, 主要研究方向为认知侦察、深度学习|杨承志(1974—), 男, 教授, 博士, 主要研究方向为认知电子战、信息感知与对抗|石礼盟(1995—), 男, 助理工程师, 硕士, 主要研究方向为雷达信号识别、深度学习|吴宏超(1982—), 男, 讲师, 硕士, 主要研究方向为雷达信号识别、深度学习
基金资助:
Pengyu CAO1,*, Chengzhi YANG1, Limeng SHI2, Hongchao WU1
Received:
2021-01-08
Online:
2021-08-20
Published:
2021-08-26
Contact:
Pengyu CAO
摘要:
针对非合作侦察接收机只在降噪后才能开展后续检测识别工作的问题,结合降噪自编码器和生成对抗网络的优势, 构建噪声增强网络与信号增强网络进行对抗训练。噪声增强网络往带噪信号中掺杂更复杂的噪声分量, 信号增强网络则是尽可能地降低带噪信号中的噪声分量。二者在对抗训练的过程中, 噪声增强网络生成复杂高维噪声的能力和信号增强网络降噪的能力都在提升。训练结束后, 信号增强网络具备更好的降噪性能, 为后续检测识别工作降低难度。
中图分类号:
曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于DAE-GAN网络的LPI雷达信号增强[J]. 系统工程与电子技术, 2021, 43(9): 2493-2500.
Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. LPI radar signal enhancement based on DAE-GAN network[J]. Systems Engineering and Electronics, 2021, 43(9): 2493-2500.
1 |
O'SHEA T J , ROY T , CLANCY T C . Over the air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
2 |
石礼盟, 杨承志, 吴宏超. 基于深层残差网络和三元组损失的雷达信号识别方法[J]. 系统工程与电子技术, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
SHI L M , YANG C Z , WU H C . Radar signal recognition method based on deep residual network and triplet loss[J]. Systems Engineering and Electronics, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
|
3 |
沈家煌, 黄建冲, 朱永成, 等. 雷达辐射源信号快速识别综述[J]. 电子信息对抗技术, 2017, 32 (5): 5- 10.
doi: 10.3969/j.issn.1674-2230.2017.05.002 |
SHEN J H , HUANG J C , ZHU Y C , et al. Overview of radar signal fast recognition[J]. Electronic Information Warfare Technology, 2017, 32 (5): 5- 10.
doi: 10.3969/j.issn.1674-2230.2017.05.002 |
|
4 | WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, (7): 1- 13. |
5 |
ZHANG C H , HAN Y T , ZHANG P , et al. Research on modern radar emitter modelling technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138.
doi: 10.1049/joe.2019.0579 |
6 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076 |
7 |
LI L , JI H B . Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation[J]. Expert Systems with Applications, 2011, 38 (3): 2140- 2147.
doi: 10.1016/j.eswa.2010.07.155 |
8 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7 |
9 | PETROV N , JORDANOV I , ROE J . Radar emitter signals recognition and classification with feedforward networks[J]. Procedia Computer Science, 2013, 2 (2): 1192- 1200. |
10 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5 |
11 |
YANG Z T , WU Z L , YIN Z D , et al. Hybrid radar emitter recognition based on rough K-means classifier and relevance vector machine[J]. Sensors, 2013, 13 (1): 848- 864.
doi: 10.3390/s130100848 |
12 | 张怡霄, 郭文普, 康凯, 等. 基于聚类和时序相关的重点雷达信号快速识别[J]. 系统工程与电子技术, 2020, 42 (3): 597- 602. |
ZHANG Y X , GUO W P , KANG K , et al. Key radar signal fast recognition method based on clustering and time-series correlation[J]. Systems Engineering and Electronics, 2020, 42 (3): 597- 602. | |
13 |
YANG Z T , QIU W , SUN H J , et al. Robust radar emitter recognition based on the three-dimensional distribution feature and transfer learning[J]. Sensors, 2016, 16 (3): 289- 302.
doi: 10.3390/s16030289 |
14 |
LIU Y J , XIAO P , WU H C , et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26 (5): 973- 981.
doi: 10.1109/JSEE.2015.00106 |
15 |
MA Z Y , HUANG Z , LIN A , et al. LPI radar waveform recognition based on features from multiple images[J]. Sensors (Basel, Switzerland), 2020, 20 (2): 526.
doi: 10.3390/s20020526 |
16 |
ZHANG M , LIU L T , DIAO M , et al. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682- 1706.
doi: 10.3390/s16101682 |
17 |
赵凯凯, 张柏林, 刘璘, 等. 基于频域奇异值分解的LPI雷达信号降噪[J]. 电讯技术, 2015, 55 (12): 1407- 1412.
doi: 10.3969/j.issn.1001-893x.2015.12.017 |
ZHAO K K , ZHANG B L , LIU L , et al. LPI radar signal denoising based on frequency domain SVD[J]. Telecommunication Engineering, 2015, 55 (12): 1407- 1412.
doi: 10.3969/j.issn.1001-893x.2015.12.017 |
|
18 | 胡丹. 低截获概率雷达辐射源信号降噪与检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
HU D. Research on denoising and detection technology of low probability radar radiation source signal[D]. Harbin: Harbin Institute of Technology, 2017. | |
19 | 耿常青, 杨承志, 吴宏超, 等. 基于卷积神经网络的微弱雷达信号增强技术研究[J]. 战术导弹技术, 2018, (6): 101- 105. |
GENG C Q , YANG C Z , WU H C , et al. Research on weak radar signal enhancement technology based on convolutional neural network[J]. Tactical Missile Technology, 2018, (6): 101- 105. | |
20 |
DU L , WANG B S , WANG P H , et al. Noise reduction method based on principal component analysis with beta process for micro-Doppler radar signatures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (8): 4028- 4040.
doi: 10.1109/JSTARS.2015.2451004 |
21 |
NICOLSON A , PALIWAL K K . Masked multi-head self-attention for causal speech enhancement[J]. Speech Communication, 2020, 125, 80- 96.
doi: 10.1016/j.specom.2020.10.004 |
22 |
VISHAL P , PAJESH K S . Convolutional support vector machines for speech recognition[J]. International Journal of Speech Technology, 2019, 22 (3): 601- 609.
doi: 10.1007/s10772-018-09584-4 |
23 | HEATON J , IAN G , YOSHUA B , et al. Deep learning[J]. Genetic Programming & Evolvable Machines, 2018, 19 (3): 305- 307. |
24 | SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines[C]//Proc. of the 12th International Conference on Artificial Intelligence and Statistics, 2009: 448-445. |
25 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proc. of the International Conference on Computer Vision, 2015: 1026-1034. |
26 |
WANG S H , PHILLIPS P , SUI Y , et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J]. Journal of Medical Systems, 2018, 42 (5): 85.
doi: 10.1007/s10916-018-0932-7 |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2016. |
28 |
殷敬伟, 罗五雄, 李理, 等. 基于降噪自编码器的水声信号增强研究[J]. 通信学报, 2019, 40 (10): 119- 126.
doi: 10.11959/j.issn.1000-436x.2019181 |
YIN J W , LUO W X , LI L , et al. Enhancement of underwater acoustic signal based on denoising automatic-encoder[J]. Journal on Communications, 2019, 40 (10): 119- 126.
doi: 10.11959/j.issn.1000-436x.2019181 |
|
29 | GOODFELLOW I, POUGET A J. Generative adversarial nets[C]//Proc. of the Conference on Advances in Neural Information Processing Systems, 2014: 2672-2680. |
30 |
YUAN X Y , HE P , ZHU Q L . Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017 |
31 | MEHTA K, KOBTI Z. Data augmentation using CA evolved GANs[C]//Proc. of the Symposium on Computers and Communications, 2019: 1087-1092. |
32 | ABRAMIAN D, EKLUND A. Refacing: reconstructing anonymized facial features using GANS[C]//Proc. of the 16th International Symposium on Biomedical Imaging, 2019: 1104-1108. |
33 | 郝云飞, 刘章孟, 郭福成, 等. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41 (11): 2619- 2624. |
HAO Y F , LIU Z M , GUO F C , et al. Open-set recognition of signal modulation based on generative adversarial networks[J]. Systems Engineering and Electronics, 2019, 41 (11): 2619- 2624. | |
34 |
殷小静, 胡晓峰, 刘戎翔, 等. 基于GAN的体系能力图谱生成方法[J]. 系统工程与电子技术, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14 |
YIN X J , HU X F , LIU R X , et al. Generative method of SOS capability maps based on GAN[J]. Systems Engineering and Electronics, 2020, 42 (10): 2257- 2264.
doi: 10.3969/j.issn.1001-506X.2020.10.14 |
[1] | 刘戎翔, 吴琳, 谢智歌, 刘虹麟. 基于生成对抗网络的防空体系态势辅助分析[J]. 系统工程与电子技术, 2022, 44(8): 2522-2529. |
[2] | 徐平亮, 崔亚奇, 熊伟, 熊振宇, 顾祥岐. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543-1552. |
[3] | 唐明磊, 张文鹏, 姜卫东, 高勋章. 基于多分辨率显著性滤波的微动信号增强方法[J]. 系统工程与电子技术, 2022, 44(4): 1148-1157. |
[4] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[5] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[6] | 赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43(4): 1080-1088. |
[7] | 田相轩, 石志强. 基于改进型生成对抗网络的指挥信息系统模拟数据生成算法[J]. 系统工程与电子技术, 2021, 43(1): 163-170. |
[8] | 向南, 张雄涛, 豆亚杰, 徐向前, 杨克巍, 谭跃进. 基于生成对抗网络的高端装备研制数据脱敏方法[J]. 系统工程与电子技术, 2020, 42(6): 1310-1316. |
[9] | 殷小静, 胡晓峰, 刘戎翔, 谢智歌, 马骏. 基于GAN的体系能力图谱生成方法[J]. 系统工程与电子技术, 2020, 42(10): 2257-2264. |
[10] | 朱克凡, 王杰贵. 小样本条件下SCGAN+CNN低分辨雷达目标一步识别算法[J]. 系统工程与电子技术, 2020, 42(1): 67-75. |
[11] | 郝云飞, 刘章孟, 郭福成, 张敏. 基于生成对抗网络的信号调制方式的开集识别[J]. 系统工程与电子技术, 2019, 41(11): 2619-2624. |
[12] | 黄颖坤, 金炜东, 余志斌, 吴昀璞. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40(11): 2420-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||