系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2470-2475.doi: 10.12305/j.issn.1001-506X.2021.09.13

• 传感器与信号处理 • 上一篇    下一篇

基于逆高斯纹理分布的协方差矩阵估计方法

李锐洋1,*, 霍伟博2, 马巍1, 程子扬2   

  1. 1. 中国电子科技集团公司第二十九研究所, 四川 成都 610036
    2. 电子科技大学信息与通信工程学院, 四川 成都 611731
  • 收稿日期:2020-10-21 出版日期:2021-08-20 发布日期:2021-08-26
  • 通讯作者: 李锐洋
  • 作者简介:李锐洋(1988—), 男, 高级工程师, 博士, 主要研究方向为雷达空时信号处理、雷达侦察识别|霍伟博(1987—), 男, 博士后, 主要研究方向为海杂波建模、雷达目标检测、信号分析|马巍(1985—), 男, 高级工程师, 博士, 主要研究方向为阵列信号处理、目标智能化识别|程子杨(1990—), 男, 副研究员, 博士, 主要研究方向为MIMO雷达、相控阵雷达、雷达波形设计
  • 基金资助:
    国家自然科学基金(62001084)

Covariance matrix estimation method based on inverse Gaussian texture distribution

Ruiyang LI1,*, Weibo HUO2, Wei MA1, Ziyang CHENG2   

  1. 1. Southwest China Research Institute of Electronic Equipment, Chengdu 610036, China)
    2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2020-10-21 Online:2021-08-20 Published:2021-08-26
  • Contact: Ruiyang LI

摘要:

在复合高斯杂波中检测目标信号, 需要对杂波协方差矩阵进行估计, 相应的检测性能与估计精度密切相关。利用服从逆高斯分布的纹理分量来对复合高斯杂波进行建模, 可以更好地拟合高分辨杂波实测数据。本文给出了一种两步广义似然比检测器, 先假设杂波协方差矩阵已知以获得检测统计量, 再利用纹理分量的先验分布推导协方差矩阵的最大似然估计。同时,基于贝叶斯方法, 假定纹理分量和协方差矩阵均为服从某种先验分布的随机量, 推导了协方差矩阵的最大后验估计。仿真结果显示, 基于知识的自适应检测技术由于引入了纹理分量和杂波的先验信息, 其协方差矩阵的估计精度好于最大似然估计和样本估计方法, 同时具有更好的检测性能。

关键词: 信号检测, 非均匀杂波, 知识辅助, 逆高斯分布

Abstract:

To detect the target signal in composite Gaussian clutter, the clutter covariance matrix needs to be estimated. The corresponding detection performance is closely related to the estimation accuracy. Using the texture component obeying the inverse Gaussian distribution to model the composite Gaussian clutter can better fit the measured data of high-resolution clutter. In this paper, a two-step generalized likelihood ratio detector is proposed. Firstly, the clutter covariance matrix is assumed to be known to obtain the detection statistics, and then the maximum likelihood estimation of the covariance matrix is derived from the prior distribution of texture components. At the same time, based on Bayesian method, assuming that the texture component and covariance matrix are random quantities subject to a priori distribution, the maximum a posteriori estimation of covariance matrix is derived. Simulation results show that due to the introduction of prior information of texture components and clutter, the estimation accuracy of covariance matrix of knowledge-based adaptive detection technology is better than that of maximum likelihood estimation and sample estimation methods, and has better detection performance.

Key words: signal detection, nonhomogeneous clutter, knowledge aided, inverse Gaussian distribution

中图分类号: