1 |
SERPICO S B , BRUZZONE L . A new search algorithm for feature selection in hyperspectral remote sensing images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2002, 39 (7): 1360- 1367.
|
2 |
KARAKAYA A, SENIHA E Y, ANKARA, et al. Target detection in hyperspectral images[C]//Proc. of the Signal Processing and Communication Application Conference, 2016.
|
3 |
徐栋, 杨敏, 苗宇宏, 等. 基于无人机高光谱遥感的海岛岸线精准提取方法研究与应用[J]. 海洋科学, 2020, 44 (12): 54- 60.
|
|
XU D , YANG M , MIAO Y H , et al. Research and application of accurate extraction method of island shoreline based on hyperspectral remote sensing of unmanned aerial vehicle[J]. Marine Sciences, 2020, 44 (12): 54- 60.
|
4 |
EISMANN M T , STOCKER A D , NASRABADI N M . Automated hyperspectral cueing for civilian search and rescue[J]. Proceedings of the IEEE, 2009, 97 (6): 1031- 1055.
doi: 10.1109/JPROC.2009.2013561
|
5 |
WANG X X , JIA K , LIANG S L , et al. Fractional vegetation cover estimation method through dynamic bayesian network combining radiative transfer model and crop growth model[J]. IEEE Trans.on Geoscience & Remote Sensing, 2016, 54 (12): 7442- 7450.
|
6 |
顾泽鑫, 王白娟, 苏文苹, 等. 高光谱无人机遥感影像识别技术在茶园病虫害防治中的应用研究[J]. 经济师, 2020, 12, 61- 62.
|
|
GU Z X , WANG B J , SU W P , et al. Application of hyperspectral UAV remote sensing image recognition technology in pest control of tea garden[J]. China Economist, 2020, 12, 61- 62.
|
7 |
NOTESCO G, DOR E B, BROOK A, et al. Mineral mapping of makhtesh ramon in israel using hyperspectral remote sensing day and night LWIR images[C]//Proc. of the 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014.
|
8 |
FENG J , CHEN J T , LIU L G , et al. CNN-based multilayer spatial-spectral feature fusion and sample augmentation with local and nonlocal constraints for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (4): 1299- 1313.
doi: 10.1109/JSTARS.2019.2900705
|
9 |
CHEN Y S , ZHU K Q , ZHU L , et al. Automatic design of convolutional neural network for hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 7048- 7066.
doi: 10.1109/TGRS.2019.2910603
|
10 |
XIE J , HE N J , FANG L Y , et al. Scale-free convolutional neural network for remote sensing scene classification[J]. IEEE Trans.on Geoscience & Remote Sensing, 2019, 57 (9): 6916- 6928.
|
11 |
WANG Z J , CHEN B , LU R Y , et al. FusionNet: an unsupervised convolutional variational network for hyperspectral and multispectral image fusion[J]. IEEE Trans.on Image Processing, 2020, 29, 7565- 7577.
doi: 10.1109/TIP.2020.3004261
|
12 |
KULKARNI S, SENTHILNATH J, BENEDIKTSSON J A. Classification of multi-spectral satellite image using hierarchical clustering algorithms[C]//Proc. of the IEEE Symposium Series on Computational Intelligence, 2018.
|
13 |
ZHAO C J , ZHAO H D , WANG G Z , et al. Improvement SVM classification performance of hyperspectral image using chaotic sequences in artificial bee colony[J]. IEEE Access, 2020, 8, 73947- 73956.
doi: 10.1109/ACCESS.2020.2987865
|
14 |
KAYABOL K . Approximate sparse multinomial logistic regression for classification[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 490- 493.
doi: 10.1109/TPAMI.2019.2904062
|
15 |
HAUT J M , PAOLETTI M E . Cloud implementation of multinomial logistic regression for UAV hyperspectral images[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2020, 3 (1): 163- 171.
|
16 |
何同弟, 李见为. 基于自适应稀疏表示的高光谱遥感图像分类[J]. 系统工程与电子技术, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32
|
|
HE T D , LI J W . Hyperspectral remote sensing image classification based on adaptive sparse representation[J]. Systems Engineering and Electronics, 2013, 35 (9): 1994- 1998.
doi: 10.3969/j.issn.1001-506X.2013.09.32
|
17 |
YU H Y , GAO L . Global spatial and local spectral similarity-based manifold learning group sparse representation for hyperspectral imagery classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (5): 3043- 3056.
doi: 10.1109/TGRS.2019.2947032
|
18 |
ZHANG Y Q, CAO G, WANG B S, et al. Dual sparse representation graph-based copropagation for semisupervised hyperspectral image classification[J/OL]. IEEE Trans. on Geoscience and Remote Sensing. DOI: 10.1109/TGRS.2020.3046780.
|
19 |
LIANG M M , JIAO L C , XU C D . Deep feature-based multitask joint sparse representation for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (9): 1578- 1582.
doi: 10.1109/LGRS.2019.2950095
|
20 |
CHEN Y, NARSABADI N M, TRAN T D. Classification for hyperspectral imagery based on sparse representation[C]//Proc. of the Workshop on Hyperspectral Image & Signal: Evolution in Remote Sensing, 2010.
|
21 |
CHEN Y , NASRABADI N M , TRAN T D . Hyperspectral image classification via kernel sparse representation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (1): 217- 231.
doi: 10.1109/TGRS.2012.2201730
|
22 |
TANG Y Y , YUAN H , LI L . Manifold-based sparse representation for hyperspectral image classification[J]. IEEE Trans.on Geoscience & Remote Sensing, 2014, 52 (12): 7606- 7618.
|
23 |
JIA S , HU J , XIE Y , et al. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification[J]. IEEE Trans.on Geoscience & Remote Sensing, 2016, 54 (6): 3174- 3187.
|
24 |
FANG L Y , WANG C , LI S T , et al. Hyperspectral image classification via multiple-feature-based adaptive sparse representation[J]. IEEE Trans.on Instrumentation & Measurement, 2017, 66 (7): 1645- 1657.
|
25 |
GAN L , XIA J S , DU P J , et al. Multiple feature kernel sparse representation classifier for hyperspectral imagery[J]. IEEE Trans.on Geoscience & Remote Sensing, 2018, 56 (9): 5343- 5356.
|
26 |
CHEN Y , NASRABAD N M , TRAN T D . Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Trans.on Geoence and Remote Sensing, 2011, 49 (10): 3973- 3985.
doi: 10.1109/TGRS.2011.2129595
|
27 |
ZHANG H , LI J , HUANG Y , et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7 (6): 2056- 2065.
|
28 |
FU W , LI S , FANG L , et al. Hyperspectral image classification via shape-adaptive joint sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9 (2): 556- 567.
|
29 |
陈善学, 周艳发, 漆若兰. 基于核函数的联合稀疏表示高光谱图像分类[J]. 系统工程与电子技术, 2018, 40 (3): 692- 698.
|
|
CHEN S X , ZHOU Y F , QI R L . Joint sparse representation hyperspectral image classification based on kernel function[J]. System Engineering and Electronic Technology, 2018, 40 (3): 692- 698.
|
30 |
ZHENG C Y , WANG N N , CUI J . Hyperspectral image classification with small training sample size using superpixel-guided training sample enlargement[J]. IEEE Trans.on Geoence and Remote Sensing, 2019, 57 (10): 7307- 7316.
doi: 10.1109/TGRS.2019.2912330
|
31 |
CUI M , PRASAD S . Class-dependent sparse representation classifier for robust hyperspectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (5): 2683- 2695.
doi: 10.1109/TGRS.2014.2363582
|