

系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (9): 2400-2406.doi: 10.12305/j.issn.1001-506X.2021.09.04
朱峰*, 蒋倩倩, 林川, 杨啸
收稿日期:2021-01-18
									
				
									
				
									
				
											出版日期:2021-08-20
									
				
											发布日期:2021-08-26
									
			通讯作者:
					朱峰
												作者简介:朱峰(1963—), 男, 教授, 博士, 主要研究方向为电磁环境测试、电磁干扰分析和电磁兼容性分析与设计|蒋倩倩(1994—), 女, 硕士研究生, 主要研究方向为电磁干扰分析和信号处理|林川(1980—), 男, 副教授, 博士, 主要研究方向为智能检测与识别、计算智能、电磁成像检测和信号处理|杨啸(1996—), 男, 硕士研究生, 主要研究方向为电磁干扰分析
				
							Feng ZHU*, Qianqian JIANG, Chuan LIN, Xiao YANG
Received:2021-01-18
									
				
									
				
									
				
											Online:2021-08-20
									
				
											Published:2021-08-26
									
			Contact:
					Feng ZHU   
												摘要:
由于民航周围电磁环境复杂, 一旦产生电磁干扰(electromagnetic interference,EMI), 就不易被排查, 特别是随机性较强的宽带干扰。对此, 提出一种基于支持向量机(support vector machine, SVM)的干扰源识别方法。通过实时测量干扰信号的频谱数据, 并分析其特点, 选择包络因子、频谱能量、频谱峰值、均值和方差5个特征向量, 用主成分分析法降低数据冗余程度, 最后采用SVM来判断干扰源类型。仿真结果证明, 所提算法能有效识别6类典型机场宽带干扰源, 识别精度可达98.33%。
中图分类号:
朱峰, 蒋倩倩, 林川, 杨啸. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43(9): 2400-2406.
Feng ZHU, Qianqian JIANG, Chuan LIN, Xiao YANG. Typical wideband EMI identification based on support vector machine[J]. Systems Engineering and Electronics, 2021, 43(9): 2400-2406.
| 1 | 杨乾.  民航无线电通信干扰分析及防范此类干扰的对策建议[J]. 中国无线电, 2015, (11): 31- 32. doi: 10.3969/j.issn.1672-7797.2015.11.034 | 
| YANG Q .  Analysis of civil aviation radio communication interference and countermeasures and suggestions for preventing such interference[J]. China Radio, 2015, (11): 31- 32. doi: 10.3969/j.issn.1672-7797.2015.11.034 | |
| 2 | MOU J. Research on the design of electromagnetic environment EMC evaluation system for aviation station[C]//Proc. of the 11th International Conference on Mechanical and Aerospace Engineering, 2020: 272-275. | 
| 3 | 张磊.  民航地空通信频率受"黑广播"干扰影响分析及治理思路[J]. 通讯世界, 2019, 26 (5): 29- 30. doi: 10.3969/j.issn.1006-4222.2019.05.018 | 
| ZHANG L .  Analysis on the influence of air-to-ground communication frequency of civil aviation on "Black Broadcasting" and management ideas[J]. World of Communication, 2019, 26 (5): 29- 30. doi: 10.3969/j.issn.1006-4222.2019.05.018 | |
| 4 | 吴婉珍.  路灯老化引起甚高频通信干扰的分析[J]. 科技创新导报, 2012, (26): 88- 89. doi: 10.3969/j.issn.1674-098X.2012.26.060 | 
| WU W Z .  Analysis of VHF communication interference caused by street lamp aging[J]. Science and Technology Innovation Bulletin, 2012, (26): 88- 89. doi: 10.3969/j.issn.1674-098X.2012.26.060 | |
| 5 | 梁飞, 効迎春, 鲁楠, 等. 电分相电弧对全向信标电磁辐射特性的分析[J]. 航空学报, 2020, 41 (8): 298- 306. | 
| LIANG F , XIAO Y C , LU L , et al. Characteristics analysis of electromagnetic emission on VOR caused by neutral section arcs[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (8): 298- 306. | |
| 6 | LI X ,  ZHU F ,  LU H D , et al.  Longitudinal propagation characteristic of pantograph arcing electromagnetic emission with high-speed train passing the articulated neutral section[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (2): 319- 326. doi: 10.1109/TEMC.2018.2817578 | 
| 7 | GAO G Q ,  YAN X ,  YANG Z F , et al.  Pantograph catenary arcing detection based on electromagnetic radiation[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (4): 983- 989. doi: 10.1109/TEMC.2018.2841050 | 
| 8 | JOHANNESSEN R ,  GALE S J ,  ASBURY M J A .  Potential interference sources to GPS and solutions appropriate for applications to civil aviation[J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 5 (1): 3- 9. doi: 10.1109/62.45990 | 
| 9 | 廖年挺.  民航GPS导航和塔台地空通信的干扰排查与分析[J]. 中国无线电, 2010, (6): 74- 76. doi: 10.3969/j.issn.1672-7797.2010.06.032 | 
| LIAO N T .  Civil aviation GPS navigation and tower-ground-air communication interference detection and analysis[J]. China Radio, 2010, (6): 74- 76. doi: 10.3969/j.issn.1672-7797.2010.06.032 | |
| 10 | 黄孟龙. 系统电磁兼容故障诊断中的干扰源辨识方法研究[D]. 西安: 西安电子科技大学, 2013. | 
| HUANG M L. Research on the interference sources identification in intra-system EMC fault diagnosis[D]. Xi'an: Xidian University, 2013. | |
| 11 | 刘君华. 电磁兼容现场测试中的干扰源辨识技术研究[D]. 西安: 西安电子科技大学, 2012. | 
| LIU J H. Research on the identification for interference sources in EMC site test[D]. Xi'an: Xidian University, 2012. | |
| 12 | FENG S W ,  ZHAO J J ,  LIU T T , et al.  Crop type identification and mapping using machine learning algorithms and Sentinel-2 time series data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3295- 3306. doi: 10.1109/JSTARS.2019.2922469 | 
| 13 | ZHOU D ,  ZHUANG X ,  ZUO H F , et al.  Deep learning-based approach for civil aircraft hazard identification and prediction[J]. IEEE Access, 2020, 8, 103665- 103683. doi: 10.1109/ACCESS.2020.2997371 | 
| 14 | LIU Y, LI K, SONG S M, et al. The research of spacecraft electrical characteristics identification and diagnosis using PCA feature extraction[C]//Proc. of the 12th International Confe-rence on Signal Processing, 2014: 1413-1417. | 
| 15 | JIANG L Y, XUE C G, CUI J G, et al. Research recognition of aircraft engine abnormal state[C]//Proc. of the 27th Chinese Control and Decision Conference, 2015: 4625-4630. | 
| 16 | 吴杰, 周建江, 朱劼昊.  一种噪声背景下的雷达目标识别方法[J]. 系统工程与电子技术, 2010, 32 (7): 1403- 1407. doi: 10.3969/j.issn.1001-506X.2010.07.012 | 
| WU J ,  ZHOU J J ,  ZHU J H .  Radar target recognition method under noise background[J]. Systems Engineering and Electro-nics, 2010, 32 (7): 1403- 1407. doi: 10.3969/j.issn.1001-506X.2010.07.012 | |
| 17 | TASCIOGLU S, URETEN O. Bayesian wideband spectrum segmentation for cognitive radios[C]//Proc. of the 18th International Conference on Computer Communications and Networks, 2009. | 
| 18 | KAMEOKA H ,  ONO N ,  SAGAYAMA S .  Speech spectrum modeling for joint estimation of spectral envelope and fundamental frequency[J]. IEEE Trans.on Audio, Speech, and Language Processing, 2010, 18 (6): 1507- 1516. doi: 10.1109/TASL.2009.2036287 | 
| 19 | QI X X, JIANG W. Application of wavelet energy feature in facial expression recognition[C]//Proc. of the International Workshop on Anti-counterfeiting, Security and Identification, 2007: 169-174. | 
| 20 | ADAM A, MOKHTAR N, MUBIN M, et al. Feature selection and classifier parameter estimation for EEG signal peak detection using gravitational search algorithm[C]//Proc. of the 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014: 103-108. | 
| 21 | BHATTACHARJEE M ,  PRASANNA S R M ,  GUHA P .  Speech/music classification using features from spectral peaks[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2020, 28, 1549- 1559. doi: 10.1109/TASLP.2020.2993152 | 
| 22 | MENG C X, SONG D, CAO F, et al. Statistical characteristic of spectrum for ambient noise at high frequencies in shallow water[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017. | 
| 23 | 刘振焘, 徐建平, 吴敏, 等.  语音情感特征提取及其降维方法综述[J]. 计算机学报, 2018, 41 (12): 2833- 2851. doi: 10.11897/SP.J.1016.2018.02833 | 
| LIU Z T ,  XU J P ,  WU M , et al.  A review of the method of speech emotion feature extraction and dimension reduction[J]. Journal of Computer Science, 2018, 41 (12): 2833- 2851. doi: 10.11897/SP.J.1016.2018.02833 | |
| 24 | YANG H ,  DU Q ,  CHEN G S .  Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5 (2): 544- 554. doi: 10.1109/JSTARS.2012.2185822 | 
| 25 | XIAO C K ,  SHAO W H ,  XIAO R L .  Toward more efficient WMSN data search combined FJLT dimension expansion with PCA dimension reduction[J]. IEEE Access, 2020, 8, 104139- 104147. doi: 10.1109/ACCESS.2020.2999484 | 
| 26 | ZHAO H M ,  ZHENG J J ,  XU J J , et al.  Fault diagnosis method based on principal component analysis and broad learning system[J]. IEEE Access, 2019, 7, 99263- 99272. doi: 10.1109/ACCESS.2019.2929094 | 
| 27 | CHEN K N. Indirect PCA dimensionality reduction based machine learning algorithms for power system transient stability assessment[C]//Proc. of the IEEE Innovative Smart Grid Technologies-Asia, 2019: 4175-4179. | 
| 28 | 黄勇, 郑春颖, 宋忠虎.  多类支持向量机算法综述[J]. 计算技术与自动化, 2005, (4): 61- 63. doi: 10.3969/j.issn.1003-6199.2005.04.020 | 
| HUANG Y ,  ZHENG C Y ,  SONG Z H .  Review of multi-support vector machines[J]. Computing Technology and Automation, 2005, (4): 61- 63. doi: 10.3969/j.issn.1003-6199.2005.04.020 | |
| 29 | 胡国胜, 钱玲, 张国红.  支持向量机的多分类算法[J]. 系统工程与电子技术, 2006, 28 (1): 127- 132. doi: 10.3321/j.issn:1001-506X.2006.01.033 | 
| HU G S ,  QIAN L ,  ZHANG G H .  Multi-classification algorithm of support vector machine[J]. Systems Engineering and Electronics, 2006, 28 (1): 127- 132. doi: 10.3321/j.issn:1001-506X.2006.01.033 | |
| 30 | 董春曦, 饶鲜, 杨绍全, 等.  支持向量机参数选择方法研究[J]. 系统工程与电子技术, 2004, 26 (8): 1117- 1120. doi: 10.3321/j.issn:1001-506X.2004.08.029 | 
| DONG C X ,  RAO X ,  YANG S Q , et al.  Method for selecting the parameters of support vector machines[J]. Systems Engineering and Electronics, 2004, 26 (8): 1117- 1120. doi: 10.3321/j.issn:1001-506X.2004.08.029 | |
| 31 | LONG Z L ,  ZHOU X ,  ZHANG X B , et al.  Recognition and classification of wire bonding joint via image feature and SVM model[J]. IEEE Trans.on Components, Packaging and Manufacturing Technology, 2019, 9 (5): 998- 1006. doi: 10.1109/TCPMT.2019.2904282 | 
| 32 | FU J W ,  WU G ,  ZHANG Y Z , et al.  Active user identification based on asynchronous sparse Bayesian learning with SVM[J]. IEEE Access, 2019, 7, 108116- 108124. doi: 10.1109/ACCESS.2019.2931563 | 
| [1] | 马泽煊, 李进, 路艳丽, 陈晨. 融合WaveNet和BiGRU的网络入侵检测方法[J]. 系统工程与电子技术, 2022, 44(8): 2652-2660. | 
| [2] | 李郝亮, 陈思伟, 王雪松. 海面角反射器的极化旋转域特性研究[J]. 系统工程与电子技术, 2022, 44(7): 2065-2073. | 
| [3] | 刘鉴兴, 张天骐, 柏浩钧, 叶绍鹏. 基于信息矩阵估计的极化码参数盲识别算法[J]. 系统工程与电子技术, 2022, 44(2): 668-676. | 
| [4] | 薛春岭, 曹菲, 孙庆, 秦建强, 冯晓伟. 基于多特征信息融合的海面微弱目标检测[J]. 系统工程与电子技术, 2022, 44(11): 3338-3345. | 
| [5] | 陈诚, 刘涛, 宋晓骥, 粟毅, 金光虎. 基于稀疏信号处理的穿透成像增强算法[J]. 系统工程与电子技术, 2021, 43(8): 2021-2027. | 
| [6] | 王凌, 潘华, 赵维. 互耦效应下低复杂度的二维DOA估计算法[J]. 系统工程与电子技术, 2021, 43(7): 1819-1823. | 
| [7] | 罗忠涛, 郭人铭, 詹燕梅. 脉冲噪声非线性变换设计的研究综述[J]. 系统工程与电子技术, 2021, 43(7): 1971-1980. | 
| [8] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. | 
| [9] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. | 
| [10] | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43(3): 603-609. | 
| [11] | 王坤, 侯树贤, 王力. 基于自适应变异PSO-SVM的APU性能参数预测模型[J]. 系统工程与电子技术, 2021, 43(2): 526-536. | 
| [12] | 张国令, 吴崇明, 李睿, 来杰, 向前. 基于一维堆叠池化融合卷积自编码器的HRRP目标识别方法[J]. 系统工程与电子技术, 2021, 43(12): 3533-3541. | 
| [13] | 赵若辰, 王敬东, 林思玉, 顾东泽. 基于卷积神经网络的小型建筑物检测算法[J]. 系统工程与电子技术, 2021, 43(11): 3098-3106. | 
| [14] | 马愈昭, 王强强, 王瑞松, 熊兴隆. 基于SVD和MPSO-SVM的光纤周界[J]. 系统工程与电子技术, 2020, 42(8): 1652-1661. | 
| [15] | 卢中昊, 徐军, 林铭团. 电磁辐射发射现场测试中基于空域对消的背景电磁干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(7): 1433-1438. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||