1 |
吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23 (4): 582- 602.
|
|
WU Y Q , LIU Z L . Research progress on automatic coastline extraction from remote sensing images[J]. Journal of Remote Sensing, 2019, 23 (4): 582- 602.
|
2 |
马小峰, 赵冬至, 邢小罡, 等. 海岸线卫星遥感提取方法研究[J]. 海洋环境科学, 2007, (2): 185- 189.
doi: 10.3969/j.issn.1007-6336.2007.02.022
|
|
MA X F , ZHAO D Z , XING X G , et al. Study on satellite remote sensing extraction method of coastline[J]. Journal of Marine Environmental Science, 2007, (2): 185- 189.
doi: 10.3969/j.issn.1007-6336.2007.02.022
|
3 |
FERRETTI A , MONTIGUARNIERI A . InSAR principles: guidelines for SAR interferometry processing and interpretation[M]. Paris: the European Space Agency Publications, 2007.
|
4 |
CHENG J H , GAO G , KU X S , et al. Automatic road network extraction of high resolution SAR image based on MRF[J]. Journal of Systems Engineering, 2012, 34 (7): 1377- 1381.
|
5 |
GB 12327-1998. 海道测量规范[S]. 北京: 国家质量技术监督局, 2004.
|
|
GB 12327-1998. Specification for hydrographic surveys[S]. Beijing: State Administration of Quality and Technical Supervision, 2004.
|
6 |
LIU C , YANG J , YIN J J , et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (11): 4908- 4920.
doi: 10.1109/JSTARS.2016.2613279
|
7 |
WANG D L , YANG Y . Kernel estimation for optimal threshold SAR image coastline extraction[J]. Journal of Radar Science and Technology, 2019, 17 (3): 310- 318.
|
8 |
SUI H G, XU C. Automatic extraction of water in high-resolution SAR images based on multi-scale level set method and Otsu algorithm[C]// Proc. of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012.
|
9 |
LI Z M , LUO Y Z , MAN W , et al. Study on extraction and change of Fujian coastline based on remote sensing and GIS[J]. Journal of Applied Oceanography, 2017, 36 (1): 125- 134.
|
10 |
蒋科迪, 殷勇, 范开桂, 等. 基于Canny算子的南通江海岸线研究[J]. 测绘通报, 2019, (10): 83- 88.
|
|
JIANG K D , YIN Y , FAN K G , et al. Research on the coastline of Nantong river based on Canny operator[J]. Bulletin of Surveying and Mapping, 2019, (10): 83- 88.
|
11 |
ALONSO M T , LOPEZ-MARTINEZ C , MALLORQUI J J , et al. Edge enhancement algorithm based on the wavelet transform for automatic edge detection in SAR images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (1): 222- 235.
doi: 10.1109/TGRS.2010.2052814
|
12 |
QIAO X Q , WANG Q , ZHAN C , et al. Automatic shoreline extraction of the yellow river delta based on multi-spectral data[J]. Journal of Oceanography, 2016, 38 (7): 59- 71.
|
13 |
TOCHAMNANVITA T , MUTTITANON W . Investigation of coastline changes in three provinces of Thailand using remote sensing[J]. International Archives of the Photogrammetry Remote Sensing, 2014, 8 (5): 1079- 1083.
|
14 |
朱长明, 张新, 骆剑承, 等. 基于样本自动选择与SVM结合的海岸线遥感自动提取[J]. 国土资源遥感, 2013, 25 (2): 69- 74.
|
|
ZHU C M , ZHANG X , LUO J C , et al. Coastline remote sensing automatic extraction based on automatic sample selection and SVM[J]. Journal of Remote Sensing of Land and resources, 2013, 25 (2): 69- 74.
|
15 |
CHEN L F , CUI X L , LI Z H , et al. A new deep learning algorithm for SAR scene classification based on spatial statistical modeling and features re-calibration[J]. Sensors, 2019, 19 (11): 2479.
doi: 10.3390/s19112479
|
16 |
CHEN L F , WENG T , XING J , et al. A new deep learning network for automatic bridge detection from sar images based on balanced and attention mechanism[J]. Remote Sensing, 2020, 12 (3): 441- 459.
doi: 10.3390/rs12030441
|
17 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc. of the International Conference on Neural Information Processing Systems, 2012.
|
18 |
CHEN L F , TAN S Y , PAN Z H , et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12 (3): 560- 584.
doi: 10.3390/rs12030560
|
19 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (4): 640- 651.
|
20 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2016, 40 (4): 834- 848.
|
21 |
ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2016.
|
22 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
23 |
LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
24 |
PENG C, ZHANG X Y, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
25 |
LANG F K , YANG J , LI D R . An adaptive enhanced Lee speckle filter for polarimetric SAR image[J]. Bulletin of Surveying and Mapping, 2014, 43 (7): 690- 697.
|
26 |
XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
27 |
HUANG G, LIU Z, MAATEN L V, et al. Densely connected convolutional networks[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
28 |
ZHANG K Q , LIAO Q . FPGA implementation of eight-direction Sobel edge detection algorithm based on adaptive threshold[J]. Journal of Physics: Conference Series, 2020, 1678 (1): 012105.
|
29 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
30 |
TAN S Y , CHEN L F , PAN Z H , et al. Geospatial contextual attention mechanism for automatic and fast airport detection in SAR imagery[J]. IEEE Access, 2020, 8, 173627- 173640.
doi: 10.1109/ACCESS.2020.3024546
|
31 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
32 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc. of the International Conference on Computer Vision and Pattern Recogintion, 2015.
|