1 |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8 (6): 693- 709.
|
|
DING C B , QIU X L , XU F , et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8 (6): 693- 709.
|
2 |
洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7 (6): 5- 26.
|
|
HONG W , WANG Y P , LIN Y , et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7 (6): 5- 26.
|
3 |
向高, 张晓玲, 吴宗亮. 基于随机阵列的NUFFT-BP三维快速成像[J]. 系统工程与电子技术, 2015, 37 (4): 725- 731.
|
|
XIANG G , ZHANG X L , WU Z L . Fast 3D imaging for random array based on NUFFT BP[J]. Systems Engineering and Electronics, 2015, 37 (4): 725- 731.
|
4 |
SHEEN D M , MCMAKIN D L , HALL T E . Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Trans.on Microwave Theory Techniques, 2001, 49 (9): 1581- 1592.
doi: 10.1109/22.942570
|
5 |
MEO S D, MATRONE G, PASIAN M, et al. High-resolution mm-wave imaging techniques and systems for breast cancer detection[C]//Proc. of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017.
|
6 |
GAO Y , ZOUGHI R . Millimeter wave reflectometry and imaging for noninvasive diagnosis of skin burn injuries[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 66 (1): 77- 84.
doi: 10.1109/TIM.2016.2620778
|
7 |
ZHU R , ZHOU J , CHENG B , et al. Sequential frequency-domain imaging algorithm for near-field MIMO-SAR with arbitrary scanning paths[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (8): 2967- 2975.
doi: 10.1109/JSTARS.2019.2918367
|
8 |
MOULDER W F. Development of a high-throughput microwave imaging system for concealed weapons detection[C]//Proc. of the IEEE International Symposium on Phased Array Systems and Technology (PAST), 2016.
|
9 |
BU H X , BAI X , ZHAO J , et al. Joint matrix form SAR imaging and autofocus based on compressed sensing[J]. Chinese Journal of Electronics, 2017, 45 (4): 874- 881.
|
10 |
LEI L , ZHOU C H , LI X W , et al. Comparision of methods for polarimetric SAR tomography with small number of baselines in forested areas[J]. Chinese Journal of Electronics, 2019, 28 (5): 1073- 1079.
doi: 10.1049/cje.2019.06.026
|
11 |
WU C , ZHANG Z , LIANG X , et al. Fast 3-D imaging algorithm based on unitary transformation and real-valued sparse representation for MIMO array SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 7033- 7047.
doi: 10.1109/TGRS.2019.2910553
|
12 |
YANIK M E , TORLAK M . Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7, 31801- 31819.
doi: 10.1109/ACCESS.2019.2902859
|
13 |
ZHANG S Q , DONG G G , KUANG G Y . Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (4): 1994- 2006.
doi: 10.1109/TGRS.2017.2771826
|
14 |
ZHU R , ZHOU J , JIANG G , et al. Range migration algorithm for near-field MIMO-SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (12): 2280- 2284.
doi: 10.1109/LGRS.2017.2761838
|
15 |
SHEEN D M, HALL T E, MCMAKIN D L, et al. Three-dimensional radar imaging techniques and systems for near-field applications[C]// Proc. of the SPIE Radar Sensor Technology, 2016.
|
16 |
WANG Z M , GUO Q J , TIAN X Z , et al. Near-field 3-D millimeter-wave imaging using MIMO RMA with range compensation[J]. IEEE Trans.on Microwave Theory and Techniques, 2019, 67 (3): 1157- 1166.
doi: 10.1109/TMTT.2018.2884409
|
17 |
HU X W , TONG N N , GUO Y D , et al. MIMO radar 3-D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18 (8): 3152- 3162.
doi: 10.1109/JSEN.2018.2810705
|
18 |
ÁLVAREZY, RODRIGUEZV Y, GONZALEZV B, 等. Fourier-based imaging for subsampled multistatic arrays[J]. IEEE Trans.on Antennas and Propagation, 2016, 64 (6): 2557- 2562.
|
19 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
20 |
BARANIUK R, STEEGHS P. Compressive radar imaging[C]//Proc. of the IEEE Radar Conference, 2007.
|
21 |
YANG Z, ZHENG Y R, Near-field 3-D synthetic aperture radar imaging via compressed sensing[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012: 2513-2516.
|
22 |
NI J C , ZHANG Q , LUO Y , et al. Compressed sensing SAR imaging based on centralized sparse representation[J]. IEEE Sensors Journal, 2018, 18 (12): 4920- 4932.
doi: 10.1109/JSEN.2018.2831921
|
23 |
陈晨, 魏中浩, 徐志林, 等. 基于高斯字典原子稀疏表示的高精度宽角SAR成像方法[J]. 系统工程与电子技术, 2019, 41 (11): 2471- 2478.
|
|
CHEN C , WEI Z H , XU Z L , et al. High-precision wide-angle SAR imaging method based on sparse representation of Gaussian dictionary atoms[J]. Systems Engineering and Electronics, 2019, 41 (11): 2471- 2478.
|
24 |
杨俊刚. 利用稀疏信息的正则化雷达成像理论与方法研究[D]. 长沙: 国防科学技术大学, 2013.
|
|
YANG J G. Research on theory and method of regularization radar imaging using sparse information[D]. Changsha: National University of Defense Technology, 2013.
|
25 |
徐志林, 魏中浩, 吴辰阳, 等. 基于l1正则化的多通道滑动聚束SAR成像[J]. 系统工程与电子技术, 2019, 41 (2): 304- 310.
|
|
XU Z L , WEI Z H , WU C Y , et al. Multi-channel sliding focus SAR imaging based on l1 regularization[J]. Systems Engineering and Electronics, 2019, 41 (2): 304- 310.
|
26 |
WANG W P , ZHAO B , LIU X J , et al. Total-variation improved split Bregman method for ground penetrating radar image restoration[J]. Journal of Applied Geophysics, 2013, 99, 146- 153.
doi: 10.1016/j.jappgeo.2013.08.014
|
27 |
LIU H Y , YAN F X , JU J B , et al. Adaptive vectorial total variation models for multi-channel synthetic aperture radar images despeckling with fast algorithms[J]. IET Image Proces-sing, 2013, 7 (9): 795- 804.
doi: 10.1049/iet-ipr.2013.0177
|
28 |
YANG Z , ZHENG Y R . A comparative study of compressed sensing approaches for 3-D synthetic aperture radar image reconstruction[J]. Digital Signal Processing, 2014, 32, 24- 33.
doi: 10.1016/j.dsp.2014.05.016
|
29 |
ZAMANI H , FAKHARZADEH M . 1.5D sparse array for millimeter-wave imaging based on compressive sensing techniques[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (4): 2008- 2015.
doi: 10.1109/TAP.2018.2800531
|
30 |
THOMAS F , CYRIL D , SANA A , et al. Sparsity-driven reconstruction technique for microwave/millimeter-wave computational imaging[J]. Sensors, 2018, 18 (5): 1536.
doi: 10.3390/s18051536
|