1 |
陈奇东, 陶海红, 刘睿, 等. GNSS弱干扰TDOA定位时差估计方法[J]. 中国电子科学研究院学报, 2020, 15 (2): 135- 140.
doi: 10.3969/j.issn.1673-5692.2020.02.007
|
|
CHEN Q D , TAO H H , LIU R , et al. Time difference estimation method for TDOA location of GNSS weak interference[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15 (2): 135- 140.
doi: 10.3969/j.issn.1673-5692.2020.02.007
|
2 |
毛虎, 吴德伟, 卢虎. 对GPS接收机多音干扰参数优化设置及效能分析[J]. 系统工程与电子技术, 2019, 41 (8): 1699- 1704.
|
|
MAO H , WU D W , LU H . Parameters configuration and effectiveness analysis of multiple-tone jamming to GPS receiver[J]. Systems Engineering and Electronics, 2019, 41 (8): 1699- 1704.
|
3 |
AMIN M G , WANG X , ZHANG Y D , et al. Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS[J]. Proceedings of the IEEE, 2016, 104 (6): 1302- 1317.
doi: 10.1109/JPROC.2016.2531582
|
4 |
CETIN E , THOMPSON R J R , DEMPSTER A G . Passive inter-ference localization within the GNSS environmental monitoring system (GEMS): TDOA aspects[J]. GPS Solutions, 2014, 18 (4): 483- 495.
doi: 10.1007/s10291-014-0393-5
|
5 |
SCOTT L . J911: fast jammer detection: and location using cell-phone crowd-sourcings[J]. GPS World, 2010, 21 (11): 32.
|
6 |
FONTANELLA D, BAUERNFEIND R, EISSFELLER B. In-car GNSS jammer localization with a vehicular ad-hoc network[C]//Proc. of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation, 2012.
|
7 |
BORIO D, GIOIA C, ŠTERN A, et al. Jammer localization: From crowdsourcing to synthetic detection[C]//Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2016.
|
8 |
WANG P , MORTON Y . Efficient weighted centroid technique for crowdsourcing GNSS RFI localization using differential RSS[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (3): 2471- 2477.
doi: 10.1109/TAES.2019.2917577
|
9 |
BLUMENTHAL J, GROSSMANN R, GOLATOWSKI F, et al. Weighted centroid localization in zigbee-based sensor networks[C]//Proc. of the IEEE International Symposium on Intelligent Signal Processing, 2007.
|
10 |
PAHLAVAN K , LEVESQUE H , ALLEN H . Wireless information networks[M]. NewYork: Springer, 1996.
|
11 |
PHILLIP W W . GPS receiver RF interference monitoring, mitigation, and analysis techniques[J]. Navigation, 1994, 41 (4): 367- 392.
doi: 10.1002/j.2161-4296.1994.tb01886.x
|
12 |
HATA M . Empirical formula for propagation loss in land mobile radio services[J]. IEEE Trans.on Vehicular Technology, 2013, 19 (3): 317- 325.
|
13 |
MANGOLD S , FORKEL I . Optimal DLC protocol configuration for realistic broadband fixed wireless access networks based on ATM[J]. Annals of Telecommunications-Annales Des Telecommunications, 2000, 55 (11): 567- 576.
|
14 |
LEE W C Y . Estimate of local average power of a mobile radio signal[J]. IEEE Trans.on Vehicular Technology, 2006, 34 (1): 22- 27.
|
15 |
EGLI J J . Radio propagation above 40 MC over irregular terrain[J]. Proceedings of the IRE, 2007, 45 (10): 1383- 1391.
|
16 |
QING S . Book review: neural networks-a systematic introduction, raul rojas[J]. International Journal of Robust & Nonlinear Control, 2015, 8 (4): 460- 461.
|
17 |
HAYKIN S . Neural networks: a comprehensive foundation[M]. 3rd ed London: Macmillan, 1998.
|
18 |
NOORI R , KHAKPOUR A , OMIDVAR B , et al. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic[J]. Expert Systems with Applications, 2010, 37 (8): 5856- 5862.
doi: 10.1016/j.eswa.2010.02.020
|
19 |
NOORI R , KARBASSI A R , MEHDIZADEH H , et al. A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network[J]. Environmental Progress & Sustainable Energy, 2011, 30 (3): 439- 449.
|
20 |
HAGAN M T , DEMUTH H B , BEALE M . Neural network design[M]. Beijing: PWS Publishing Company, 1997.
|
21 |
DENNIS JR J E , SCHNABEL R B . Numerical methods for unconstrained optimization and nonlinear equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996.
|
22 |
MQLLER M F . A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6 (4): 525- 533.
doi: 10.1016/S0893-6080(05)80056-5
|
23 |
RIEDMILLER M, BRAUN H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm[C]//Proc. of the IEEE International Conference on Neural Networks, 1993.
|
24 |
GUPTA V K , KHANI H , AHMADI R B , et al. Prediction of capillary gas chromatographic retention times of fatty acid methy-lesters in human blood using MLR, PLS and back-propagation artificial neural networks[J]. Talanta, 2011, 83 (3): 1014- 1022.
doi: 10.1016/j.talanta.2010.11.017
|