1 |
张伟, 许爱强, 平殿发. 基于一种自适应核学习的KECA子空间故障特征提取[J]. 北京理工大学学报, 2017, 37 (8): 864- 868.
|
|
ZHANG W , XU A Q , PING D F . A method for feature extraction in KECA feature subspace based on adaptive kernel learning[J]. Transactions of Beijing Institute of Technology, 2017, 37 (8): 864- 868.
|
2 |
SU Z Q , TANG B P , DENG L , et al. Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction[J]. Measurement, 2015, 62, 1- 14.
doi: 10.1016/j.measurement.2014.11.003
|
3 |
DEMETGUL M , YILDIZ K , TASKIN S , et al. Fault diagnosis on material handling system using feature selection and data mining techniques[J]. Measurement, 2014, 55, 15- 24.
doi: 10.1016/j.measurement.2014.04.037
|
4 |
WANG G T , SONG Q B , XU B W , et al. Selecting feature subset for high dimensional data via the propositional FOIL rules[J]. Pattern Recognition, 2013, 46 (1): 199- 214.
doi: 10.1016/j.patcog.2012.07.028
|
5 |
SHILBAYEH S, VADERA S. Feature selection in meta learning framework[C]//Proc.of the Science and Information Conference, 2014: 269-275.
|
6 |
姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27 (2): 161- 166, 192.
|
|
YAO X , WANG X D , ZHANG Y X , et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27 (2): 161- 166, 192.
|
7 |
ZHAN H. Application of rough set and support vector machine in fault diagnosis of power electronic circuit[C]//Proc.of the IEEE 2nd International Conference on Information Management & Engineering, 2010: 289-292.
|
8 |
GAO W F , HU L , ZHANG P , et al. Feature selection consi-dering the composition of feature relevancy[J]. Pattern Recognition Letters, 2018, 112, 70- 74.
doi: 10.1016/j.patrec.2018.06.005
|
9 |
ZHOU F Y, XUE B, CHEN K. Particle swarm optimization for feature selection with adaptive mechanism and new updating strategy[C]//Proc.of the 31st Australasian Joint Conference Artificial Intelligence, 2018: 419-431.
|
10 |
WANG Z X, ZHAO M, CHEN S Y. Feature selection based on extreme learning machine[C]//Proc. of the 3rd International Conference on Deep Learning Technologies, 2019: 57-63.
|
11 |
TANG X, DONG M, BI S. Feature selection algorithm based on K-means clustering[C]//Proc.of the IEEE 7th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2018: 1522-1527.
|
12 |
曾子林, 张宏军, 张睿, 等. 基于元学习思想的算法选择问题综述[J]. 控制与决策, 2014, 29 (6): 961- 968.
|
|
ZENG Z L , ZHANG H J , ZHANG R , et al. Summary of algorithm selection problem based on meta-learning[J]. Control and Decision, 2014, 29 (6): 961- 968.
|
13 |
FILCHENKOV A, PENDRYAK A. Datasets meta-feature description for recommending feature selection algorithm[C]//Proc.of the Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search Fruct Conference, 2016: 11-18.
|
14 |
WANG G T , SONG Q B , SUN H L , et al. A feature subset selection algorithm automatic recommendation method[J]. Journal of Artificial Intelligence Research, 2014, 47 (1): 1- 34.
|
15 |
PARMEZAN A R S , LEE H D , WU F C . Metalearning for choosing feature selection algorithms in data mining: proposal of a new framework[J]. Expert Systems with Applications, 2017, 75, 1- 24.
doi: 10.1016/j.eswa.2017.01.013
|
16 |
LORENA A C , MACIEL A I , PÉRICLES B C , et al. Data complexity meta-features for regression problems[J]. Machine Learning, 2018, 107, 209- 246.
doi: 10.1007/s10994-017-5681-1
|
17 |
SONG Q B , WANG G T , WANG C . Automatic recommendation of classification algorithms based on data set characteristics[J]. Pattern Recognition, 2012, 45 (7): 67- 81.
|
18 |
高明哲. 基于相关向量机的载电子设备PHM关键技术研究[D]. 烟台: 海军航空大学, 2017.
|
|
GAO M Z. Research on key technologies of PHM for airborne electronic equipment based on relevance vector machine[D]. Yantai: Naval Aviation University, 2017.
|
19 |
SUN Q , PFAHRINGER B . Pairwise meta-rules for better meta-learning based algorithm ranking[J]. Machine Learning, 2013, 93 (1): 141- 161.
doi: 10.1007/s10994-013-5387-y
|
20 |
BRAZDIL P B , SOARES C , DA COSTA C J . Ranking learning algorithms: using IBL and meta-learning on accuracy and time results[J]. Machine Learning, 2003, 50 (3): 251- 277.
doi: 10.1023/A:1021713901879
|
21 |
NGUYEN H B, XUE B, ANDREAE P, et al. Particle swarm optimisation with genetic operators for feature selection[C]//Proc.of the IEEE Congress on Evolutionary Computation, 2017: 286-293.
|
22 |
SMETANNIKOV I, DEYNEKA A, FILCHENKOV A. Meta learning application in rank aggregation feature selection[C]//Proc.of the 3rd International Conference on Soft Computing and Machine Intelligence, 2016: 120-123.
|
23 |
WANG J , HEDAR A R , WANG S , et al. Rough set and scatter search metaheuristic based feature selection for credit scoring[J]. Expert Systems with Applications, 2012, 39 (6): 6123- 6128.
doi: 10.1016/j.eswa.2011.11.011
|
24 |
LUCIEN M, LAETITIA J, MARIE-ELÉONORE K M, et al. Feature selection using Tabu search with learning memory: learning Tabu search[C]//Proc.of the International Confe-rence on Learning and Intelligent Optimization, 2016.
|
25 |
SINGH S , SINGH A K . Correlation-based feature subset selection technique for web spam classification[J]. International Journal of Web Engineering and Technology, 2019, 13 (4): 363.
|
26 |
KOWSHALYA A M , MADHUMATHI R , GOPIKA N . Correlation based feature selection algorithms for varying datasets of different dimensionality[J]. Wireless Personal Communications, 2019, 108 (3): 1977- 1993.
doi: 10.1007/s11277-019-06504-w
|
27 |
SONG Q B , NI J J , WANG G T . A fast clustering-based feature subset selection algorithm for high-dimensional data[J]. IEEE Trans.on Knowledge and Data Engineering, 2013, 25 (1): 1- 14.
doi: 10.1109/TKDE.2011.181
|
28 |
DE S C , FONTANELLA F , MARROCCO C , et al. A GA-based feature selection approach with an application to handwritten character recognition[J]. Pattern Recognition Letters, 2014, 35, 130- 141.
doi: 10.1016/j.patrec.2013.01.026
|
29 |
PALMA-MENDOZA R J , RODRIGUEZ D , DE-MARCOS L . Distributed reliefF-based feature selection in spark[J]. Knowledge & Information Systems, 2018,
doi: 10.1007/s10115-017-1145-y
|
30 |
TSAMARDINOS I , BORBOUDAKIS G , KATSOGRIDAKIS P , et al. A greedy feature selection algorithm for big data of high dimensionality[J]. Machine Learning, 2019, 108, 149- 202.
doi: 10.1007/s10994-018-5748-7
|