系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (7): 1943-1953.doi: 10.12305/j.issn.1001-506X.2021.07.26

• 制导、导航与控制 • 上一篇    下一篇

基于非线性模型预测控制的火星大气进入智能制导方法

胥彪1, 李翔1, 李爽1,*, 张金鹏2,3   

  1. 1. 南京航空航天大学航天学院, 江苏 南京 210016
    2. 中国空空导弹研究院, 河南 洛阳 471009
    3. 航空制导武器航空科技重点实验室, 河南 洛阳 471009
  • 收稿日期:2020-09-02 出版日期:2021-06-30 发布日期:2021-07-08
  • 通讯作者: 李爽
  • 作者简介:胥彪(1986—), 男, 讲师, 博士, 主要研究方向为飞行器制导与控制|李翔(1996—), 男, 硕士研究生, 主要研究方向为航天器制导与控制|李爽(1978—), 男, 教授, 博士, 主要研究方向为航天器动力学与控制|张金鹏(1964—), 男, 研究员, 博士, 主要研究方向为制导与控制技术
  • 基金资助:
    国家自然科学基金(61603183);航空科学基金(30160152002);博士后科学基金(2018M630560)

Intelligent guidance method based on nonlinear model predictive control for Mars atmospheric entry

Biao XU1, Xiang LI1, Shuang LI1,*, Jinpeng ZHANG2,3   

  1. 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    2. Luoyang Optoelectro Technology Development Center, Luoyang 471009, China
    3. Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons, Luoyang 471009, China
  • Received:2020-09-02 Online:2021-06-30 Published:2021-07-08
  • Contact: Shuang LI

摘要:

针对火星大气进入精确制导问题, 提出了基于非线性模型预测控制(nonlinear model predictive control, NMPC)的智能进入制导方法。首先, 考虑了进入制导约束, 采用NMPC方法设计制导算法。通过引入衰减记忆滤波器, 提出了基于误差信息估计的预测模型修正方法, 增强系统对模型误差的鲁棒性, 并利用变预测时域策略提高系统性能。然后, 以NMPC制导系统为制导模板, 在实际条件下生成大量样本数据集, 进行深度神经网络(deep neural network, DNN)的离线训练。最后, 在进入制导过程中利用DNN代替求解复杂优化问题和积分预测的过程, 在线快速解算控制量, 并结合横向制导实现智能制导。仿真结果表明, 提出的制导方法能够快速计算指令, 实现了高精度制导。

关键词: 火星进入制导, 非线性模型预测控制, 衰减记忆滤波器, 深度神经网络, 智能制导

Abstract:

Aiming at the precision guidance problem of the Mars atmospheric entry guidance, an intelligent guidance method based on nonlinear model predictive control (NMPC) is proposed. First, considering guidance constraints, the guidance system is designed by using the NMPC method. By introducing the fading-memory filter, the prediction model correction method based on error information estimation is proposed to enhance the robustness of the system against model errors, and the system performance is improved by using the variable prediction time domain strategy. Then the NMPC guidance system is used as the guidance template to generate the sample data set under the actual entry conditions, which conduct the off-line training of the deep neural network. Finally, in the process of entry guidance, deep neural network is used to solve control variable online quickly instead of the process of solving complex optimization problem and integral prediction, and the intelligent guidance is realized by combining with lateral guidance. The simulation results show that the proposed guidance method can calculate command quickly and realize high-precision guidance.

Key words: mars entry guidance, nonlinear model predictive control, fading-memory filter, deep neural network, intelligent guidance

中图分类号: