1 |
LI S , JIANG X Q . Review and prospect of guidance and control for mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69, 40- 57.
doi: 10.1016/j.paerosci.2014.04.001
|
2 |
KLUEVER C A . Entry guidance performance for mars precision landing[J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (6): 1537- 1544.
doi: 10.2514/1.36950
|
3 |
JON C H , DONALD E G . Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6 (6): 442- 447.
doi: 10.2514/3.8523
|
4 |
SANJAY B , ANIL V R , KENNETH D M . Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (5): 726- 732.
doi: 10.2514/2.4318
|
5 |
TALOLE S E, JOEL B, KENNETH D M. Sliding mode observer for drag tracking in entry guidance[C]//Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.
|
6 |
PENG Y M , LI S . Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry[J]. Advances in Space Research, 2012, 49 (1): 49- 63.
doi: 10.1016/j.asr.2011.08.016
|
7 |
XIA Y Q , CHEN R F , PU F , et al. Active disturbance rejection control for drag tracking in mars entry guidance[J]. Advances in Space Research, 2014, 53 (5): 853- 861.
doi: 10.1016/j.asr.2013.12.008
|
8 |
吴超, 赵振华, 杨俊, 等. 基于约束预测控制的火星大气进入轨迹跟踪[J]. 深空探测学报, 2014, 1 (2): 128- 133.
|
|
WU C , ZHAO Z H , YANG J , et al. Mars entry trajectory tracking using constrained predictive control[J]. Journal of Deep Space Exploration, 2014, 1 (2): 128- 133.
|
9 |
WU C, LI S H, YANG J, et al. Disturbance observer based constrained multi-model predictive control for Mars entry trajectory tracking[C]//Proc. of IEEE Chinese Guidance, Navigation and Control Conference, 2014.
|
10 |
LU P . Nonlinear predictive controllers for continuous systems[J]. Journal of Guidance, Control, and Dynamics, 1994, 17 (3): 553- 560.
doi: 10.2514/3.21233
|
11 |
JOEL B, KENNETH D M. Nonlinear predictive controller for drag tracking in entry guidance[C]//Proc. of the AIAA Astrodynamics Specialist Conference and Exhibit, 2008.
|
12 |
赵振华, 杨俊, 李世华. 基于阻力跟踪的火星大气进入段非线性预测制导律设计[J]. 深空探测学报, 2015, 2 (2): 137- 143.
|
|
ZHAO Z H , YANG J , LI S H . Drag-Based nonlinear predictive guidance law for Mars entry[J]. Journal of Deep Space Exploration, 2015, 2 (2): 137- 143.
|
13 |
YAN X D . Mars entry guidance based on nonlinear model predictive control with disturbance observer[J]. Journal of the Franklin Institute, 2019, 356 (17): 9824- 9843.
|
14 |
JARDON E R , BECERRO T A . Artificial neural networks to predict overall heat transfer coefficient and pressure drop on a simulated heat exchanger[J]. International Journal of Applied Engineering Research, 2019, 14 (13): 3097- 3103.
|
15 |
曾庆华, 董荣华, 皮术武. 基于最优制导模板的神经网络预测制导方法[J]. 国防科技大学学报, 2014, 36 (1): 137- 141.
|
|
ZENG Q H , DONG R H , PI S W . Neural network predictive guidance method based on pattern of optimal guidance[J]. Journal of National University of Defense Technology, 2014, 36 (1): 137- 141.
|
16 |
LI Z , SUN X D , HU C , et al. Neural network based online predictive guidance for high lifting vehicles[J]. Aerospace Science and Technology, 2018, 82-83, 149- 160.
doi: 10.1016/j.ast.2018.09.004
|
17 |
YANN L , YOSHUA B , GEOFFREY H . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
|
18 |
SCHMIDHUBER J . Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61, 85- 117.
doi: 10.1016/j.neunet.2014.09.003
|
19 |
CHENG L , WANG Z B , SONG Y , et al. Real-time optimal control for irregular asteroid landings using deep neural networks[J]. Acta Astronautica, 2020, 170, 66- 79.
doi: 10.1016/j.actaastro.2019.11.039
|
20 |
BIGGS JD , FOURNIER H . Neural-network-based optimal attitude control using four impulsive thrusters[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (2): 299- 309.
doi: 10.2514/1.G004226
|
21 |
BERNIKER M , KORDING K P . Deep networks for motor control functions[J]. Frontiers in Computational Neuroscience, 2015, 9 (32): 1- 10.
|
22 |
CARLOS S , DARIO I . Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (5): 1122- 1135.
doi: 10.2514/1.G002357
|
23 |
陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013.
|
|
CHEN H . Model predictive control[M]. Beijing: Science Press, 2013.
|
24 |
FARSHAD R , BEHROOZ R , ZAHRA R . A novel nonlinear model predictive control design based on a hybrid particle swarm optimization-sequential quadratic programming algorithm: application to an evaporator system[J]. Transactions of the Institute of Measurement and Control, 2016, 38 (1): 23- 32.
doi: 10.1177/0142331214561917
|
25 |
赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997.
|
|
ZHAO H Y . Dynamics and guidance of aircraft reentry[M]. Changsha: National Defense Science and Technology University Press, 1997.
|
26 |
STEPHAN M , MATTHEW H , DAVID B . Stochastic gradient descent as approximate Bayesian inference[J]. Journal of Machine Learning Research, 2017, 18 (1): 4873- 4907.
|
27 |
LAARHOVEN T V. L2 regularization versus batch and weight normalization[C]//Proc. of 31st Conference on Neural Information Processing Systems, 2017.
|
28 |
KHAN S , HAYAT M , PORIKLI F . Regularization of deep neural networks with spectral dropout[J]. Neural Networks, 2019, 110 (1): 82- 90.
|
29 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proc. of the International Conference on Artificial Intelligence and Statistics, 2010, 9: 249-256.
|
30 |
JOEL B. Advances in spacecraft atmospheric entry guidance[D]. Irvine: University of California, 2010.
|