1 |
MONTGOMERY D C . Experimental designs for constrained r egions[J]. Quality Engineering, 2002, 14 (4): 587- 601.
doi: 10.1081/QEN-120003561
|
2 |
AUFFRAY Y , BARBILLON P , MARIN J M . Maximin design on nonhypercube domains and kernel interpolation[J]. Statistics and Computing, 2012, 22 (3): 703- 712.
doi: 10.1007/s11222-011-9273-9
|
3 |
LEKIVETZ R , JONES B . Fast flexible space-filling designs for nonrectangular regions[J]. Quality and Reliability Engineering International, 2015, 31 (5): 829- 837.
doi: 10.1002/qre.1640
|
4 |
LEKIVETZ R , JONES B . Fast flexible space-filling designs with nominal factors for nonrectangular regions[J]. Quality and Reliability Engineering International, 2019, 35 (2): 677- 684.
doi: 10.1002/qre.2429
|
5 |
MAK S , JOSEPH V R . Minimax and minimax projection designs using clustering[J]. Journal of Computational and Grap hical Statistics, 2018, 27 (1): 166- 178.
doi: 10.1080/10618600.2017.1302881
|
6 |
PERRIN G , CANNAMELA C . A repulsion-based method for the definition and the enrichment of optimized space filling designs in constrained input spaces[J]. Journal of the French Statistical Society, 2017, 158 (1): 37- 67.
|
7 |
FUERLE F , SIENZ J . Formulation of the audze-Eglais uniform Latin hypercube design of experiments for constrained design spaces[J]. Advances in Engineering Software, 2011, 42 (9): 680- 689.
doi: 10.1016/j.advengsoft.2011.05.004
|
8 |
BEAL M. CLAEYS B M . Constructing space-filling designs using an adaptive WSP algorithm for spaces with constraints[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 133, 84- 91.
doi: 10.1016/j.chemolab.2013.11.009
|
9 |
KANG L L . Stochastic coordinate-exchange optimal designs with complex constraints[J]. Quality Engineering, 2019, 31 (3): 401- 416.
doi: 10.1080/08982112.2018.1508695
|
10 |
YANG D S, DONG M Z. A novel criterion and searching algorithm for constructing Latin hypercube designs[C]//Proc. of the International Conference on Advanced Robotics and Mechatronics. Macau, 2016.
|
11 |
ZHANG X R , LIU M Q , ZHOU Y . Orthogonal uniform composite designs[J]. Journal of Statistical Planning and Inference, 2020, 206, 100- 110.
doi: 10.1016/j.jspi.2019.08.007
|
12 |
王东辉, 武泽平. 约束域优化拉丁超立方设计方法[P]. 中国: CN106202667A, 2016-12-07.
|
|
WANG D H, WU Z P. Optimized latin hypercube design method for constrained spaces[P]. China: CN106202667A, 2016-12-07.
|
13 |
WU Z P , WANG D H . Space-filling experimental designs for constrained design spaces[J]. Engineering Optimization, 2019, 51 (9): 1495- 1508.
doi: 10.1080/0305215X.2018.1542691
|
14 |
JOSEPH V R , YING H . Orthogonal-maximin latin hypercube designs[J]. Statistica Sinica, 2008, 18 (1): 171- 186.
|
15 |
刘新亮, 郭波. 基于改进ESE算法的多目标优化试验设计方法[J]. 系统工程与电子技术, 2011, 32 (2): 410- 414.
|
|
LIU X L , GUO B . Multi-objective experimentation design optimization based on modified ESE algorithms[J]. Systems Engineering and Electronics, 2011, 32 (2): 410- 414.
|
16 |
张昆仑, 郭波. 基于改进ILS算法的多目标优化试验设计[J]. 计算机工程, 2011, 37 (5): 273- 275.
doi: 10.3969/j.issn.1000-3428.2011.05.093
|
|
ZHANG K L , GUO B . Experimental design of multi-objective optimization based on modified ILS algorithm[J]. Computer Engineering, 2011, 37 (5): 273- 275.
doi: 10.3969/j.issn.1000-3428.2011.05.093
|
17 |
WANG C Y , YANG J Y , LIU M Q . Construction of space-filling orthogonal designs[J]. Journal of Statistical Planning and Inf erence, 2021, 213, 130- 141.
doi: 10.1016/j.jspi.2020.11.009
|
18 |
WU Z P , WANG D H , OKOLO P N , et al. Efficient space-filling and near-orthogonality sequential latin hypercube for computer experiments[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 324 (1): 348- 365.
|
19 |
SU Z R , WANG Y P , ZHOU Y C . On maximin distance and nearly orthogonal Latin hypercube designs[J]. Statistics & Probability Letters, 2020, 166, 108876.
|
20 |
杨雪, 周琦. 一类正交空间填充设计的构造[J]. 系统科学与数学, 2020, 40 (2): 289- 297.
|
|
YANG X , ZHOU Q . The construction of orthogonal space filling designs[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40 (2): 289- 297.
|
21 |
牟唯嫣, 崔栋利. 计算机实验的正交空间填充设计[J]. 系统科学与数学, 2015, 35 (12): 1457- 1462.
|
|
MU W Y , CUI D L . Orthogonal space-filling designs for computer experiments[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35 (12): 1457- 1462.
|
22 |
JIN R C , CHEN W , SUDJIANTO A . An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134 (1): 268- 287.
doi: 10.1016/j.jspi.2004.02.014
|
23 |
谢描. 近似正交设计[D]. 北京: 清华大学, 2004.
|
|
XIE M. Nearly orthogonal designs[D]. Beijing: Tsinghua University, 2004.
|
24 |
JOSEPH V R , GUL E , BA S . Maximum projection designs for computer experiments[J]. Biometrika, 2015, 102 (2): 371- 380.
doi: 10.1093/biomet/asv002
|
25 |
MORRIS M D , MITCHELL T J . Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381- 402.
doi: 10.1016/0378-3758(94)00035-T
|
26 |
IMAN R L , CONOVER W J . Small sample sensitivity analysis techniques for computer models, with an application to risk assessment[J]. The American Statistician Communications in Statistics: Theory Methods, 1980, 9 (17): 1749- 1845.
doi: 10.1080/03610928008827996
|
27 |
CONOVER W J . Practical nonparametric statistics[M]. New York: John Wiley and Sons Incorporated, 1999.
|
28 |
OWEN A B . Controlling correlations in Latin hypercube samples[J]. The American Statistician Journal of the American Statistical Association: Theory and Methods, 1994, 23 (10): 1517- 1522.
|
29 |
李为民, 陈刚, 黄仁全. 一种近正交试验设计方法[J]. 空军工程大学学报(自然科学版), 2010, 11 (3): 84- 88.
doi: 10.3969/j.issn.1009-3516.2010.03.019
|
|
LI W M , CHEN G , HUANG R Q . A method of nearly or thogonal experimental design[J]. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11 (3): 84- 88.
doi: 10.3969/j.issn.1009-3516.2010.03.019
|
30 |
KAI H , ALEXANDER A . The point in polygon problem for arbitrary polygons[J]. Computational Geometry, 2001, 20 (3): 131- 144.
doi: 10.1016/S0925-7721(01)00012-8
|