1 |
YANG B, SCHEUING J. Cramer-Rao bound and optimum sensor array for source localization from time differences of arrival[C]//Proc. of the Acoustics, Speech, and Signal, 2005.
|
2 |
SAMIRA A . A review of localization techniques for wireless sensor networks[J]. Journal of Basic and Applied Scientific Research, 2012, 2 (8): 7795- 7801.
|
3 |
SARIC Z M , KUKOLJ D D , TESLIC N D . Acoustic source localization in wireless sensor network[J]. Circuits, Systems and Signal Processing, 2010, 29 (5): 837- 856.
doi: 10.1007/s00034-010-9187-3
|
4 |
BISHOP A N , FIDAN B , ANDERSON B D O , et al. Optimality analysis of sensor-target localization geometries[J]. Automatica, 2010, 46 (3): 479- 492.
doi: 10.1016/j.automatica.2009.12.003
|
5 |
MENG W , XIE L H , XIAO W D . Optimality analysis of sensor-source geometries in heterogeneous sensor networks[J]. IEEE Trans.on Wireless Communications, 2013, 12 (4): 1958- 1967.
doi: 10.1109/TWC.2013.021213.121269
|
6 |
HO K C , VICENTE L M . Sensor allocation for source localization with decoupled range and bearing estimation[J]. IEEE Trans.on Signal Processing, 2008, 56 (12): 5773- 5789.
doi: 10.1109/TSP.2008.2005096
|
7 |
NGUYEN N H , DOGANCAY K . Optimal geometry analysis for multistatic TOA localization[J]. IEEE Trans.on Signal Processing, 2016, 64 (16): 4180- 4193.
doi: 10.1109/TSP.2016.2566611
|
8 |
WERNER J , WANG J , HAKKARAINEN A , et al. Perfor-mance and Cramer-Rao bounds for DOA/RSS estimation and transmitter localization using sectorized antennas[J]. IEEE Trans.on Vehicular Technology, 2016, 65 (5): 3255- 3270.
doi: 10.1109/TVT.2015.2445317
|
9 |
包涛, 周德云, 李立欣, 等. 近场目标方位和距离估计的克拉美罗界研究[J]. 电子与信息学报, 2016, 38 (3): 758- 762.
|
|
BAO T , ZHOU D Y , LI L X , et al. Cramer-Rao bound for near-field source localization[J]. Journal of Electronics & Information Technology, 2016, 38 (3): 758- 762.
|
10 |
杜金香, 张本茂. 基于TOA的水下目标定位算法克拉美罗界[J]. 西北工业大学学报, 2019, 37 (5): 872- 877.
|
|
DU J X , ZHANG B M . Cramér-Rao lower bound of target localization method based on TOA measurements[J]. Journal of Northwestern Polytechnical University, 2019, 37 (5): 872- 877.
|
11 |
RUI L , HO K C . Elliptic localization: performance study and optimum receiver placement[J]. IEEE Trans.on Signal Processing, 2014, 62 (18): 4673- 4688.
doi: 10.1109/TSP.2014.2338835
|
12 |
XU S , OU Y , WU X Y . Optimal sensor placement for 3D time-of-arrival target localization[J]. IEEE Trans.on Signal Processing, 2019, 67 (19): 5018- 5031.
doi: 10.1109/TSP.2019.2932872
|
13 |
XU S , OU Y S , ZHENG W M . Optimal sensor-target geometries for 3D static target localization using received-signal-strength measurements[J]. IEEE Signal Processing Letters, 2019, 26 (7): 966- 970.
doi: 10.1109/LSP.2019.2913337
|
14 |
ZHOU R Y, CHEN J F, YAN Q L. Sensor placement optimization for distributed acoustic source localization system using semidefinite programming[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017.
|
15 |
MORENO-SALINAS D , PASCOAL A , ARANDA J . Optimal sensor placement for multiple target positioning with range-only measurements in two-dimensional scenarios[J]. Sensors, 2013, 13 (8): 10674- 10710.
doi: 10.3390/s130810674
|
16 |
闫青丽, 陈建峰. 分布式声源定位系统节点最优布局方法及性能研究[J]. 电子学报, 2018, 46 (5): 165- 172.
|
|
YAN Q L , CHEN J F . Node placement optimization for distributed acoustic source localization system and performance study[J]. Acta Electronica Sinica, 2018, 46 (5): 165- 172.
|
17 |
YANG C , KAPLAN L , BLASCH E . Performance measures of covariance and information matrices in resource management for target state estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (3): 2594- 2613.
doi: 10.1109/TAES.2012.6237611
|
18 |
YANG C , KAPLAN L , BLASCH E , et al. Optimal placement of heterogeneous sensors for targets with gaussian priors[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (3): 1637- 1653.
doi: 10.1109/TAES.2013.6558009
|
19 |
DOGANCAY K . Relationship between geometric translations and TLS estimation bias in bearings-only target localization[J]. IEEE Trans.on Signal Processing, 2008, 56 (3): 1005- 1017.
doi: 10.1109/TSP.2007.909052
|
20 |
BADRIASL L, KENNEDY H, FINN A. Effects of coordinate system rotation on two novel closed-from localization estimators using azimuth/elevation[C]//Proc. of the IEEE 16th International Conference on Information Fusion, 2013.
|
21 |
XU S , DOGANCAY K . Optimal sensor placement for 3D angle-of-arrival target localization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (3): 1196- 1211.
doi: 10.1109/TAES.2017.2667999
|
22 |
MORENO-SALINAS D , PASCOAL A , ARANDA J . Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios[J]. Sensors, 2013, 13 (8): 10386- 10417.
doi: 10.3390/s130810386
|
23 |
DOGANCAY K . Bias compensation for the bearings-only pseudolinear target track estimator[J]. IEEE Trans.on Signal Processing, 2005, 54 (1): 59- 68.
|
24 |
NGUYEN N H , DOANAY K . Closed-form algebraic solutions for angle-of-arrival source localization with bayesian priors[J]. IEEE Trans.on Wireless Communications, 2019, 18 (8): 3827- 3842.
doi: 10.1109/TWC.2019.2918516
|
25 |
DOGANCAY K, ARABLOUEI R. Selective angle measurements for a 3D-AOA instrumental variable TMA algorithm[C]//Proc. of the IEEE Signal Processing Conference, 2015.
|
26 |
DOGANCAY K . Online optimization of receiver trajectories for scan-based emitter localization[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (3): 1117- 1125.
doi: 10.1109/TAES.2007.4383601
|