1 |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
|
|
BAO Z , XING M D , WANG T . Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
2 |
BIE B , QUAN Y , SUN G C , et al. A modified range model and Doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (11): 1923- 1927.
doi: 10.1109/LGRS.2019.2959660
|
3 |
YOU D , SUN G C , XIA X G , et al. Time-varying baseline error estimation and compensation in UAV SAR interferometry based on time-domain sub-aperture of raw radar data[J]. IEEE Sensors Journal, 2020, 20 (20): 12203- 12216.
doi: 10.1109/JSEN.2020.3000335
|
4 |
MEI H W , LI Y C , XING M D , et al. Correction of a frequency domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5820- 5820.
|
5 |
PITTMAN T B , SHIH Y H , STREKALOV D V , et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52 (5): 3429- 3432.
doi: 10.1103/PhysRevA.52.R3429
|
6 |
LI D Z , LI X , QIN Y L , et al. Radar coincidence imaging: an instantaneous imaging technique with stochastic signals[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (4): 2261- 2277.
doi: 10.1109/TGRS.2013.2258929
|
7 |
XU K J , PEDRYCZ W , LI Z W . Augmentation of the reconstruction performance of fuzzy C-means with an optimized fuzzification factor vector[J]. Knowledge-based Systems, 2021, 222 (5): 6951- 6961.
|
8 |
QUAN Y H , TONG Y P , FENG W , et al. A novel image fusion method of multi-spectral and SAR images for land cover classification[J]. Remote Sensing, 2020, 12 (22): 3801- 3821.
doi: 10.3390/rs12223801
|
9 |
QUAN Y H , TONG Y P , FENG W , et al. Relative total variation structure analysis-based fusion method for hyperspectral and lidar data classification[J]. Remote Sensing, 2021, 13 (6): 1143- 1164.
doi: 10.3390/rs13061143
|
10 |
QUAN Y H , ZHANG R , LI Y C , et al. Microwave correlation forward-looking super-resolution imaging based on compressed sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (3): 1780- 1799.
|
11 |
ZHOU X L, WANG H Q, CHENG Y Q, et al. A fast radar coincidence imaging approach for sparse target[C]//Proc. of the International Workshop on Electromagnetics: Applications and Student Innovation Competition, 2017.
|
12 |
周海飞. 基于时空随机辐射场的微波凝视成像新方法及其辐射源特性研究[D]. 合肥: 中国科学技术大学, 2011.
|
|
ZHOU H F. Research on a new method of microwave staring imaging based on spatial-temporal random radiation field and characteristics of random radiation source[D]. Hefei: University of Science and Technology of China, 2011.
|
13 |
马远鹏. 基于时空两维随机辐射场的微波凝视关联成像初探[D]. 合肥: 中国科学技术大学, 2013.
|
|
MA Y P. Preliminary research on microwave staring correlated imaging based on temporal-spatial stochastic radiation fields[D]. Hefei: University of Science and Technology of China, 2011.
|
14 |
LIU B , WANG D J . Orthogonal radiation field construction for microwave staring correlated imaging[J]. Progress in Electromagnetics Research M, 2017, 57 (3): 139- 149.
|
15 |
MARQUES E C , MACIEL N , NAVINER L , et al. A review of sparse recovery algorithms[J]. Quality Control, Transactions, 2019, 7 (4): 1300- 1322.
|
16 |
KNILL C , ROOS F , SCHWEIZER B , et al. Random multiplexing for MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29 (4): 300- 302.
doi: 10.1109/LMWC.2019.2901405
|
17 |
YU S Q, ZHANG Q H, QIN Q, et al. Microwave imaging of inhomogeneous objects based on Bayesian compressed sensing[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019.
|
18 |
许然. 提高雷达成像质量的若干新体制和新方法研究[D]. 西安: 西安电子科技大学, 2015.
|
|
XU R. Study on new systems and techniques for improving radar imaging performances[D]. Xi'an: Xidian University, 2015.
|
19 |
ZHA G F , WANG H Q , YANG Z , et al. Adaptive sparse reconstruction with joint parametric estimation for high-speed uniformly moving targets in coincidence imaging radar[J]. Journal of Applied Remote Sensing, 2017, 10 (2): 1- 17.
|
20 |
ZHU Z Y, XU F, WANG H P, et al. Microwave imaging of non-rigid moving target using 2D sparse MIMO array[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018.
|
21 |
CHEN Y A, ZHANG Q, SUN L, et al. Moving target imaging based on sparse SIMO radar with multiple carrier frequencies[C]//Proc. of the IET International Radar Conference, 2015.
|
22 |
LI D Z , LI X , CHENG Y Q , et al. Radar coincidence imaging in the presence of target-motion-induced error[J]. Journal of Electronic Imaging, 2014, 23 (2): 023014.
doi: 10.1117/1.JEI.23.2.023014
|
23 |
ZHOU X L , WANG H Q , CHENG Y Q , et al. Sparse auto-calibration for radar coincidence imaging with gain-phase errors[J]. Sensors, 2018, 15 (11): 27611- 27624.
|
24 |
ZHU S T , ZHANG A X , XU Z , et al. Radar coincidence imaging with random microwave source[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14 (1): 1239- 1242.
|
25 |
GUO Y Y , HE X Z , WANG D J . A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science and Technology, 2013, 24 (7): 074013.
doi: 10.1088/0957-0233/24/7/074013
|
26 |
ZHANG R, QUAN Y H, XU R, et al. High-resolution imaging based on temporal-spatial stochastic radiation field and compressive sensing theory[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020.
|
27 |
查国峰. 运动目标微波关联成像技术研究[D]. 长沙: 国防科学技术大学, 2016.
|
|
ZHA G F. Microwave coincidence imaging technique research for moving target[D]. Changsha: National University of Defense Technology, 2016.
|
28 |
LIU W , MENG J , ZHOU L . Impact analysis of DRFM-based active jamming to radar detection efficiency[J]. The Journal of Engineering, 2019, 2019 (20): 6856- 6858.
doi: 10.1049/joe.2019.0501
|
29 |
RAMEZ E , RADWAN K . Costas-code-based radar waveform design using adaptive weights with target scattering coefficients and optimal variable time spacing with improved ambiguity function[J]. The Institution of Engineering and Technology Radar, Sonar and Navigation, 2020, 14 (12): 1905- 1917.
doi: 10.1049/iet-rsn.2020.0133
|
30 |
BARANIUK R G , GOLDSTEIN T , SANKARANARAYANAN A C , et al. Compressive video sensing: algorithms, architectures, and applications[J]. IEEE Signal Processing Magazine, 2017, 34 (1): 52- 66.
doi: 10.1109/MSP.2016.2602099
|