1 |
茅于海. 频率捷变雷达[M]. 北京: 国防工业出版社, 1981.
|
|
MAO Y H . Frequency agility radar[M]. Beijing: National Defense Industry Press, 1981.
|
2 |
全英汇, 方文, 高霞, 等. 捷变频雷达导引头技术现状与发展趋势[J/OL]. 航空兵器[2021-02-25]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20210203.1545.002.html.
|
|
QUAN Y H, FANG W, GAO X, et al. Review on frequency agile radar seeker[J/OL]. Aero Weaponry[2021-02-25]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20210203.1545.002.html.
|
3 |
董淑仙, 全英汇, 陈侠达, 等. 基于捷变频联合数学形态学的干扰抑制算法[J]. 系统工程与电子技术, 2020, 42 (7): 1491- 1498.
|
|
DONG S X , QUAN Y H , CHEN X D , et al. Interference suppression algorithm based on frequency agility combined with mathematical morphology[J]. Systems Engineering and Electronics, 2020, 42 (7): 1491- 1498.
|
4 |
AXELSSON S R J . Analysis of random step frequency radar and comparison with experiments[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (4): 890- 904.
doi: 10.1109/TGRS.2006.888865
|
5 |
LIU Y M , MENG H D , LI G , et al. Range-velocity estimation of multiple targets in randomised stepped-frequency radar[J]. Electronics Letters, 2008, 44 (17): 1032- 1034.
doi: 10.1049/el:20081608
|
6 |
SKOLNIK M I . Radar handbook[M]. New York: McGraw-Hill Education, 2008.
|
7 |
CANDES E J , TAO T . Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 51 (12): 4203- 4215.
doi: 10.1109/TIT.2005.858979
|
8 |
HUANG T Y , LIU Y M , XU X X , et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Trans.on Signal Processing, 2008, 66 (23): 6228- 6240.
|
9 |
YANG J G , THOMPSON J , HUANG X T , et al. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2012, 51 (2): 983- 994.
|
10 |
李少东, 杨军, 陈文峰, 等. 基于压缩感知理论的雷达成像技术与应用研究进展[J]. 电子与信息学报, 2016, 38 (2): 495- 508.
|
|
LI S D , YANG J , CHEN W F , et al. Overview of radar imaging technique and application based on compressive sensing theory[J]. Journal of Electronics & Information Technology, 2016, 38 (2): 495- 508.
|
11 |
LIU Z , WEI X Z , LI X . Decoupled ISAR imaging using RSFW based on twice compressed sensing[J]. IEEE Trans.on Aerospace and Electronic Systems, 2004, 50 (4): 3195- 3211.
|
12 |
WANG L , HUANG T Y , LIU Y M . Phase compensation and image autofocusing for randomized stepped frequency ISAR[J]. IEEE Sensors Journal, 2019, 19 (10): 3784- 3796.
doi: 10.1109/JSEN.2019.2897014
|
13 |
苏伍各, 王宏强, 邓彬, 等. 基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究[J]. 电子与信息学报, 2015, 37 (1): 1- 8.
|
|
SU W G , WANG H Q , DENG B , et al. The interpulse frequency agility ISAR imaging technology based on sparse Bayesian method[J]. Journal of Electronics & Information Technology, 2015, 37 (1): 1- 8.
|
14 |
HUANG T Y , LIU Y M , MENG H , et al. Cognitive random stepped frequency radar with sparse recovery[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 858- 870.
doi: 10.1109/TAES.2013.120443
|
15 |
WANG L , HUANG T Y , LIU Y M . Randomized stepped grequency radars exploiting block sparsity of extended targets: a theoretical analysis[J]. IEEE Trans.on Signal Processing, 2021, 69, 1378- 1393.
doi: 10.1109/TSP.2021.3058444
|
16 |
HUANG T Y , SHLEZINGER N , XU X Y , et al. Multi-carrier agile phased array radar[J]. IEEE Trans.on Signal Processing, 2020, 68, 5706- 5721.
doi: 10.1109/TSP.2020.3026186
|
17 |
LI Y H, HUANG T Y, XU X Y, et al. Phase transition in frequency agile radar using compressed sensing[C]//Proc. of the IEEE Radar Conference, 2020.
|
18 |
NATARAJAN B K . Sparse approximate solutions to linear systems[J]. SIAM Journal on Computing, 1995, 24 (2): 227- 234.
doi: 10.1137/S0097539792240406
|
19 |
CANDES E J . The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346 (9-10): 589- 592.
doi: 10.1016/j.crma.2008.03.014
|
20 |
FOUCART S , RAUHUT H . A mathematical introduction to compressive sensing[M]. New York: Springer, 2013.
|
21 |
FUCHS J J . On sparse representations in arbitrary redundant bases[J]. IEEE Trans.on Information Theory, 2004, 50 (6): 1341- 1344.
doi: 10.1109/TIT.2004.828141
|
22 |
BAJWA W U , DUARTE M F , CALDERBANK R . Conditioning of random block subdictionaries with applications to block-sparse recovery and regression[J]. IEEE Trans.on Information Theory, 2015, 61 (7): 4060- 4079.
doi: 10.1109/TIT.2015.2429632
|
23 |
CARIN L , LIU D , GUO B . Coherence, compressive sensing, and random sensor arrays[J]. IEEE Antennas and Propagation Magazine, 2011, 53 (4): 28- 39.
doi: 10.1109/MAP.2011.6097283
|
24 |
AMELUNXEN D , LOTZ M , MCCOY M B , et al. Living on the edge: phase transitions in convex programs with random data[J]. Information and Inference: a Journal of the IMA, 2014, 3 (3): 224- 294.
doi: 10.1093/imaiai/iau005
|
25 |
DONOHO D L . High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete & Computational Geometry, 2006, 35 (4): 617- 652.
|
26 |
YANG Z , ZHANG C , XIE L . On phase transition of compressed sensing in the complex domain[J]. IEEE Signal Processing Letters, 2011, 19 (1): 47- 50.
|
27 |
DONOHO D , TANNER J . Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing[J]. Philosophical Trans.of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1906): 4273- 4293.
doi: 10.1098/rsta.2009.0152
|