1 |
XU J , WANG M , QIAO L . Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015, 105, 54- 63.
doi: 10.1016/j.oceaneng.2015.06.022
|
2 |
BAK J , NGUYEN H N , PARK S , et al. Positioning control of an underwater robot with tilting thrusters via decomposition of thrust vector[J]. International Journal of Control Automation and Systems, 2017, 15 (1): 2283- 2291.
doi: 10.1007/s12555-016-0298-x
|
3 |
ANGEl E Z S, ADRIAN M M, MIGUEL A G R, et al. Depth control of an underwater vehicle using robust pd controller: real-time experiments[C]//Proc. of the IEEE OES Autonomous Underwater Vehicle Workshop, 2018.
|
4 |
BORLAUG I , PETTERSEN K , GRAVDAHL J . Trajectory tracking for an articulated intervention AUV using a super-twisting algorithm in 6 DOF[J]. International Federation of Automatic Control, 2018, 51 (29): 311- 316.
|
5 |
ELMOKADEM T , ZRIBI M , YOUCEF T K . Terminal sliding mode control for the trajectory tracking of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2017, 129, 613- 625.
doi: 10.1016/j.oceaneng.2016.10.032
|
6 |
WANG Y J , ZHANG M J , WILSON P A , et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault[J]. Ocean Engineering, 2015, 110, 15- 24.
doi: 10.1016/j.oceaneng.2015.09.035
|
7 |
张伟, 滕延斌, 魏世琳, 等. 欠驱动UUV自适应RBF神经网络反步跟踪控制[J]. 哈尔滨工程大学学报, 2018, 39 (1): 97- 103.
|
|
ZHANG W , TENG Y B , WEI S L , et al. Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J]. Journal of Harbin Engineering University, 2018, 39 (1): 97- 103.
|
8 |
ZHANG W, XU D, TAN M L, et al. Trajectory tracking control of underactuated UUV for underwater recovery[C]//Proc. of the International Conference on Instrumentation and Measurement, 2013: 386-391.
|
9 |
SWAROOP D , HEDRICK J K , YIP P P , et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Trans.on Automatic Control, 2000, 45 (10): 1893- 1899.
doi: 10.1109/TAC.2000.880994
|
10 |
张天平, 鲁瑶. 带有未建模动态的非线性系统的自适应动态面控制[J]. 控制与决策, 2012, 27 (3): 335- 342.
|
|
ZHANG T P , LU Y . Adaptive dynamic surface control of nonlinear systems with unmodeled dynamics[J]. Control and Decision, 2012, 27 (3): 335- 342.
|
11 |
PAN Y P , YU H Y . Dynamic surface control via singular perturbation analysis[J]. Automatica, 2015, 57, 29- 33.
doi: 10.1016/j.automatica.2015.03.033
|
12 |
CUI R X , YANG C G , LI Y , et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE Trans.on Systems, Man, and Cybernetics, 2017, 47 (6): 1019- 1029.
doi: 10.1109/TSMC.2016.2645699
|
13 |
GAN W Y, ZHU D Q, SUN B. Trajectory tracking of unmanned underwater vehicles based on model predictive control in two dimension[C]//Proc. of the Conference on Industrial Electronics and Applications, 2016: 212-217.
|
14 |
YAN Z P , YU H M , ZHANG W , et al. Globally finite-time stable tracking control of underactuated UUVs[J]. Ocean Engineering, 2015, 107, 132- 146.
doi: 10.1016/j.oceaneng.2015.07.039
|
15 |
徐健, 汪慢, 乔磊. 欠驱动无人水下航行器三维轨迹跟踪的反步控制[J]. 控制理论与应用, 2014, 31 (11): 1589- 1596.
doi: 10.7641/CTA.2014.30835
|
|
XU J , WANG M , QIAO L . Backstepping-based controller for three-dimensional -trajectory tracking of underactuated unmanned underwater vehicles[J]. Control Theory and Applications, 2014, 31 (11): 1589- 1596.
doi: 10.7641/CTA.2014.30835
|
16 |
YAN Z P , YANG Z W , ZHANG J Z , et al. Trajectory tracking control of UUV based on backstepping sliding mode with fuzzy switching gain in diving plane[J]. IEEE Access, 2019, 7, 166788- 166795.
doi: 10.1109/ACCESS.2019.2953530
|
17 |
LI J , GUO H , ZHANG H H , et al. Double-loop structure integral sliding mode control for UUV trajectory tracking[J]. IEEE Access, 2019, 7, 101620- 101632.
doi: 10.1109/ACCESS.2019.2925570
|
18 |
RANGEL M A G , MANZANILLA A , SUAREZ A E Z , et al. Adaptive non-singular terminal sliding mode control for an unmanned underwater vehicle: real-time experiments[J]. International Journal of Control, Automation and Systems, 2020, 18 (3): 615- 628.
doi: 10.1007/s12555-019-0674-4
|
19 |
LIU S Y , LIU Y C , WANG N . Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances[J]. Nonlinear Dynamics, 2016, 88 (1): 465- 476.
doi: 10.1007%2Fs11071-016-3253-8
|
20 |
RASHAD R , ABOUDONIA A , EL-BADAWY A . A novel disturbance observer-based backstepping controller with command filtered compensation for a MIMO system[J]. Journal of the Franklin Institute, 2016, 353 (16): 4039- 4061.
doi: 10.1016/j.jfranklin.2016.07.017
|
21 |
LIANG X , QU X R , HOU Y H , et al. Three-dimensional trajectory tracking control of an underactuated autonomous underwater vehicle based on ocean current observer[J]. International Journal of Advanced Robotic Systems, 2018, 15 (5): 1- 9.
|
22 |
MOBAYEN S . Adaptive global terminal sliding mode control scheme with improved dynamic surface for uncertain nonlinear systems[J]. International Journal of Control Automation and Systems, 2018, 16 (4): 1692- 1700.
doi: 10.1007/s12555-017-0473-8
|
23 |
QIAO L , ZHANG W D . Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances[J]. IEEE Journal of Oceanic Engineering, 2019, 44 (1): 29- 53.
doi: 10.1109/JOE.2017.2777638
|
24 |
DENNIS B , MOHAMED A M , CLAUDIO P , et al. Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach[J]. Automatica, 2019, 100, 123- 134.
doi: 10.1016/j.automatica.2018.11.008
|
25 |
MOHAMED A M , DENNIS W J B , CLAUDIO P , et al. Observer based path following for underactuated marine vessels in the presence of ocean currents: a local approach[J]. International Federation of Automatic Control, 2017, 50 (1): 13654- 13661.
|
26 |
MOE S, CAHARIJA W, PETTERSEN K Y, et al. Path following of under actuated marine surface vessels in the presence of unknown ocean currents[C]//Proc. of the American Control Conference, 2014: 3856-3861.
|
27 |
LIANG X , QU X R , WANG N , et al. Three-dimensional trajectory tracking of an under-actuated AUV based on fuzzy dynamic surface control[J]. IET Intelligent Transport Systems, 2019, 14 (5): 364- 370.
|
28 |
SHI X Y , CHENG Y H , YIN C , et al. Design of adaptive backstepping dynamic surface control method with RBF neural network for uncertain nonlinear system[J]. Neurocomputing, 2019, 330, 490- 503.
doi: 10.1016/j.neucom.2018.11.029
|
29 |
沈智鹏, 曹晓明. 基于扩张观测器的输入受限四旋翼飞行器轨迹跟踪动态面输出反馈控制[J]. 系统工程与电子技术, 2018, 40 (12): 2766- 2774.
doi: 10.3969/j.issn.1001-506X.2018.12.21
|
|
SHEN Z P , CAO X M . Extended state observer based dynamic surface output feedback control for quadrotor UAV trajectory tracking with input constraints[J]. Systems Engineering and Electronics, 2018, 40 (12): 2766- 2774.
doi: 10.3969/j.issn.1001-506X.2018.12.21
|
30 |
YU H M , GUO C , YAN Z P . Globally finitetime stable three-dimensional trajectory-tracking control of under-actuated UUVs[J]. Ocean Engineering, 2019, 189, 106329.
doi: 10.1016/j.oceaneng.2019.106329
|