1 |
SLATTERY R , ZHAO Y . Trajectory synthesis for air traffic automation[J]. Journal of Guidance, Control, and Dynamics, 1997, 20 (2): 232- 238.
doi: 10.2514/2.4056
|
2 |
LYMPEROPOULOS I, LYGEROS J. Adaptive aircraft trajectory prediction using particle filters[C]//Proc. of the AIAA Guidance, Navigation & Control Conference & Exhibit, 2008.
|
3 |
ZHAO K G , WANG C X , XIAO G Q , et al. Research for nonlinear model predictive controls to laterally control unmanned vehicle trajectory tracking[J]. Applied sciences, 2020, 10, 6034.
doi: 10.3390/app10176034
|
4 |
WANG X , JINAG X W , WU Y . A second-order HMM trajectory prediction method based on the spark platform[J]. Journal of Information Hiding and Multimedia Signal Processing, 2019, 10 (2): 346- 358.
|
5 |
MATHEW W, RAPOSO R, MARTINS B. Predicting future locations with hidden Markov models[C]//Proc. of the ACM Conference on Ubiquitous Computing, 2012: 911-918.
|
6 |
ZHANG K , XIONG J J , LI F . Bayesian trajectory prediction for a hypersonic gliding reentry vehicle based on intent inference[J]. Journal of Astronautics, 2018, 39, 1262- 1265.
|
7 |
王新, 杨任农, 左家亮. 基于HPSO-TPFENN的目标机轨迹预测[J]. 西北工业大学学报, 2019, 37 (3): 612- 619.
doi: 10.3969/j.issn.1000-2758.2019.03.025
|
|
WANG X , YANG R N , ZUO J L . Trajectory prediction of target aircraft based on HPSO-TPFENN neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 612- 619.
doi: 10.3969/j.issn.1000-2758.2019.03.025
|
8 |
PAN T L , SUMALEE A , ZHONG R X , et al. Short-term traffic state prediction based on temporal-spatial correlation[J]. IEEE Trans.on Intelligent Transportation Systems, 2013, 14 (3): 1242- 254.
doi: 10.1109/TITS.2013.2258916
|
9 |
乔少杰, 金琨, 韩楠. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26 (5): 1048- 1063.
|
|
QIAO S J , JIN K , HAN N . Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26 (5): 1048- 1063.
|
10 |
WANG Q Y , ZHANG Z L , WANG Z Y , et al. The trajectory prediction of spacecraft by grey method[J]. Measurement Science and Technology, 2016, 27 (8): 085011- 085021.
doi: 10.1088/0957-0233/27/8/085011
|
11 |
QIAO S J , SHEN D Y , WANG X T , et al. A self-adaptive parameter selection trajectory prediction approach via hidden markova models[J]. IEEE Trans.on Intelligent Transportation Systems, 2015, 16 (1): 284- 296.
doi: 10.1109/TITS.2014.2331758
|
12 |
MA L , TIAN S . A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access, 2020, 8, 134668- 134680.
doi: 10.1109/ACCESS.2020.3010963
|
13 |
WEI L Z , ZHI B Q , ZHAO Z Y . A deep learning approach for aircraft trajectory prediction in terminal airspace[J]. IEEE Access, 2020, 8, 151250- 151266.
doi: 10.1109/ACCESS.2020.3016289
|
14 |
李明晓, 张恒才, 仇培元, 等. 一种基于模糊长短期神经网络的移动对象轨迹预测算法[J]. 测绘学报, 2018, 47 (12): 1660- 1669.
doi: 10.11947/j.AGCS.2018.20170268
|
|
LI M X , ZHANG H C , QIU P Y , et al. Predicting future locations with deep fuzzy-lstm network[J]. Acta Geodaetica et Cartographica Sinca, 2018, 47 (12): 1660- 1669.
doi: 10.11947/j.AGCS.2018.20170268
|
15 |
VIRTANEN K , RAIVIO T . Modeling pilot's sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 665- 677.
doi: 10.2514/1.11167
|
16 |
LECUN Y , BENGIO Y , HINTON G . Deeplearning[J]. Nature, 2015, 521, 436- 444.
doi: 10.1038/nature14539
|
17 |
TONG Y , LIU Y L , WANG J , et al. Text steganography on RNN-generated lyrics[J]. Mathematical Bioences and Engineering, 2019, 16 (5): 5451- 5463.
|
18 |
YANG Y , ZHOU M Y , FANG Q W , et al. AnnoFly: annotating Drosophila embryonic images based on an attention-enhanced RNN model[J]. Bioinformatics, 2019, 35 (16): 2834- 2842.
doi: 10.1093/bioinformatics/bty1064
|
19 |
SON G , KWON S , PARK N . Gender classification based on the non-lexical cues of emergency calls with recurrent neural networks (RNN)[J]. Symmetry, 2019, 11 (4): 525- 539.
doi: 10.3390/sym11040525
|
20 |
杨丽, 吴雨茜, 王俊丽. 循环神经网络研究综述[J]. 计算机应用, 2018, 38 (S2): 1- 6, 26.
|
|
YANG L , WU Y X , WANG J L . Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38 (S2): 1- 6, 26.
|
21 |
KUANG J W , YANG H Z , LIU J J , et al. Dynamic prediction of cardiovascular disease using improved LSTM[J]. International Journal of Crowd Science, 2019, 3 (1): 14- 25.
doi: 10.1108/IJCS-01-2019-0002
|
22 |
WANG P X , WANG H E , ZHANG H C , et al. A hybrid Markov and LSTM model for indoor location prediction[J]. IEEE Access, 2019, 7, 185928- 185940.
doi: 10.1109/ACCESS.2019.2961559
|
23 |
JIANG Q, TANG C L, CHEN C, et al. Stock price forecast based on lstm neural network[C]//Proc. of the 12th International Conference on Management Science and Engineering Management, 2019: 393-408.
|
24 |
GU L L , LIU Y , ZHEN J Q . Optimization of PSO algorithm based on adaptive inertia weight and escape strategy[J]. Journal of Physics: Conference Series, 2020, 1486 (3): 032033- 032039.
|
25 |
李牧东, 赵辉, 翁兴伟. 基于最优高斯随机游走和个体筛选策略的差分进化算法[J]. 控制与决策, 2016, 31 (8): 1379- 1386.
|
|
LI M D , ZHAO H , WENG X W . Differential evolution based on optimal Gaussian random walk and individual selection strategies[J]. Control and Decision, 2016, 31 (8): 1379- 1386.
|
26 |
SUN S L , WEI Y J , WANG S Y . AdaBoost-LSTM ensemble learning for financial time series forecasting[J]. Computational Science-ICCS, 2018, 10862, 590- 597.
|
27 |
ZHANG Y Y , JIA Y X , WU W Y , et al. A diagnosis method for the compound fault of gearboxes based on multi-feature and BP-AdaBoost[J]. Symmetry, 2020, 12 (3): 461- 480.
doi: 10.3390/sym12030461
|
28 |
TAHERKHANIA A , COSMAB G , MCGINNITYCD T M . AdaBoost-CNN: an adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning[J]. Neurocomputing, 2020, 404, 351- 366.
doi: 10.1016/j.neucom.2020.03.064
|
29 |
SUI X J , LI M Y , YING Y L , et al. Aerolysin nanopore identification of single nucleotides using the adaboost model[J]. Journal of Analysis & Testing, 2019, 3, 134- 139.
doi: 10.1007/s41664-019-00088-x
|
30 |
毛景慧. 基于LSTM深度神经网络的股市时间序列预测精度的影响因素研究[D]. 广州: 暨南大学.
|
|
MAO J H. Research on influencing factors of stock market time series prediction accuracy based on lstm deep neural network[D]. Guangzhou: Jinan University.
|
31 |
BIAU G , CADRE B , ROUVIÈRE L . Accelerated gradient boosting[J]. Machine Learning, 2019, 108 (6): 971- 992.
doi: 10.1007/s10994-019-05787-1
|