1 |
GJB 6850.132-2009. 水面舰艇系泊和航行试验规程第132部分: 惯性导航系统试验[S]. 北京: 总装备部军标出版发行部, 2009.
|
|
GJB 6850.132-2009. Code for mooring and sea trials of surface naval ships—Part132: test for inertial navigation system[S]. Beijing: Military Standard Press of the Headquarters of General Equipment, 2009.
|
2 |
RAITOHARJU F , GARCÍA-FERNÁNDEZ R , HOSTETTLER R , et al. Gaussian mixture models for signal mapping and positioning[J]. Signal Processing, 2019, 168, 107330.
|
3 |
CELLER B G , LE P N , ARGHA A , et al. GMM-HMM-Based blood pressure estimation using time-domain features[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (6): 3631- 3641.
doi: 10.1109/TIM.2019.2937074
|
4 |
FAHRETTIN A , GÖKHAN I · , E K M , et al. Classification of pulsars with Dirichlet process Gaussian mixture model[J]. Monthly Notices of the Royal Astronomical Society, 2020, 493, 713- 722.
doi: 10.1093/mnras/staa154
|
5 |
杨望灿, 张培林, 陈彦龙, 等. 基于量子高斯混合模型的振动信号降噪方法[J]. 振动与冲击, 2019, 38 (11): 235- 241.
|
|
YANG W C , ZHANG P L , CHEN Y L , et al. De-noising algorithm of vibration signals based on quantum Gaussian mixture model[J]. Journal of Vibration and Shock, 2019, 38 (11): 235- 241.
|
6 |
孔云波, 冯新喜, 许丁友. 基于QMC采样的GMPHD分布式融合方法[J]. 系统工程与电子技术, 2017, 39 (8): 1702- 1708.
|
|
KONG Y B , FENG X X , XU D Y . Distributed fusion of Gaussian mixture probability hypothesis density based on quasi-Monte Carlo samping[J]. Systems Engineering and Electronics, 2017, 39 (8): 1702- 1708.
|
7 |
汪韧, 郭静波, 惠俊鹏, 等. 基于卷积高斯混合模型的统计压缩感知[J]. 物理学报, 2019, 68 (18): 83- 93.
|
|
WANG R , GUO J B , HUI J P , et al. Statistical compressive sen-sing based on convolutional Gaussian mixture model[J]. Acta Physica Sinica, 2019, 68 (18): 83- 93.
|
8 |
李聪聪, 王彤, 相禹维, 等. 基于改进高斯混合模型的概率潮流解析方法[J]. 电力系统保护与控制, 2020, 48 (10): 146- 155.
|
|
LI C C , WANG T , XIANG Y W , et al. Analytical method based on improved Gaussian mixture model for probabilistic load flow[J]. Power System Protection and Control, 2020, 48 (10): 146- 155.
|
9 |
黄凤荣, 朱雨晨, 杨泽清, 等. 基于高斯混合模型的惯导/计程仪组合导航方法[J]. 中国惯性技术学报, 2019, 27 (1): 38- 41.
|
|
HUANG F R , ZHU Y C , YANG Z Q , et al. SINS/EML navigation method based on Gaussian mixtures unscented Kalman filter[J]. Journal of Chinese Inertial Technology, 2019, 27 (1): 38- 41.
|
10 |
井沛良, 段宇, 韩超, 等. 基于高斯混合模型和期望最大化算法的非高斯分布圆概率误差估计方法研究[J]. 兵工学报, 2019, 40 (2): 148- 155.
|
|
JING P L , DUAN Y , HAN C , et al. Circular error probable estimation method based on Gaussian mixture model and expectation maximum algorithm for non-Gaussian distribution[J]. Acta Armamentarii, 2019, 40 (2): 148- 155.
|
11 |
孙浩, 郭迎清, 赵万里. 基于GMM聚类方法构建经验模型的机载实时模型改进方法[J]. 西北工业大学学报, 2020, 38 (3): 507- 514.
doi: 10.3969/j.issn.1000-2758.2020.03.008
|
|
SUN H , GUO Y Q , ZHAO W L . Improved model for on-board real-time by constructing empirical model via GMM clustering method[J]. Journal of Northwestern Polytechnical University, 2020, 38 (3): 507- 514.
doi: 10.3969/j.issn.1000-2758.2020.03.008
|
12 |
石雪, 李玉, 赵泉华. 自适应类别的层次高斯混合模型遥感影像分割[J]. 电子学报, 2020, 48 (1): 131- 136.
doi: 10.3969/j.issn.0372-2112.2020.01.016
|
|
SHI X , LI Y , ZHAO Q H . Remote sensing image segmentation based on hierarchy gaussian mixture model with self-adaptive number of classes[J]. Acta Electronica Sinica, 2020, 48 (1): 131- 136.
doi: 10.3969/j.issn.0372-2112.2020.01.016
|
13 |
REN H , HU T T . A local neighborhood robust fuzzy clustering image segmentation algorithm based on an adaptive feature selection gaussian mixture model[J]. Sensors, 2020, 20 (8): 2391.
doi: 10.3390/s20082391
|
14 |
SUN L L , CAO Y H , WU W H , et al. A multi-target tracking algorithm based on Gaussian mixture model[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 482- 487.
doi: 10.23919/JSEE.2020.000020
|
15 |
MCLACHLAN G J , LEE S X , RATHNAYAKE S I . Finite mixture models[J]. Annual Review of Statistics and Its Application, 2019, 6 (1): 355- 378.
doi: 10.1146/annurev-statistics-031017-100325
|
16 |
PATEL E , KUSHWAHA D S . Clustering cloud workloads: K-means vs Gaussian mixture model[J]. Procedia Computer Science, 2020, 171, 158- 167.
doi: 10.1016/j.procs.2020.04.017
|
17 |
CHEN Y X , GEORGIOU T , TANNENBAUM A . Optimal transport for Gaussian mixture models[J]. IEEE Access, 2019, 7, 6269- 6278.
doi: 10.1109/ACCESS.2018.2889838
|
18 |
MELNYKOV V , MELNYKOV I . Initializing the EM algorithm in Gaussian mixture models with an unknown number of components[J]. Computational Statistics & Data Analysis, 2012, 56 (6): 1381- 1395.
|
19 |
XU K K , YANG H D , ZHU C J , et al. Finite Gaussian mixture model based multimodeling for nonlinear distributed parameter systems[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (3): 1754- 1763.
doi: 10.1109/TII.2019.2923917
|
20 |
MAITRA R . Initializing partition-optimization algorithms[J]. IEEE/ACM Trans.on Computer Biol Bioinform, 2009, 6 (1): 144- 157.
doi: 10.1109/TCBB.2007.70244
|
21 |
MAITRA R , MELNYKOV V . Simulating data to study performance of finite mixture modeling and clustering algorithms[J]. Journal of Computational and Graphical Statistics, 2010, 19 (2): 354- 376.
doi: 10.1198/jcgs.2009.08054
|
22 |
MELNYKOV V , MAITRA R . Finite mixture models and model-based clustering[J]. Statistics Surveys, 2010, 4, 80- 116.
|
23 |
MCLACHLAN G J , RATHNAYAKE S I . On the number of components in a Gaussian mixture model[J]. Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2014, 4 (5): 341- 355.
|
24 |
SHIPLEY B , DOUMA J C . Generalized AIC and chi-squared statistics for path models consistent with directed acyclic graphs[J]. Ecology, 2020, 101 (3): e02960.
|
25 |
成玮, 张周锁, 何正嘉. 采用信息理论准则的信号源数估计方法及性能对比[J]. 西安交通大学学报, 2015, 49 (8): 38- 44.
|
|
CHENG W , ZHANG Z S , HE Z J . Information criterion-based source number estimation methods with comparison[J]. Journal of Xi'an Jiaotong University, 2015, 49 (8): 38- 44.
|
26 |
WU H P , CHEUNG S F , LEUNG S O . Simple use of BIC to assess model selection uncertainty: an illustration using mediation and moderation models[J]. Multivariate Behavioral Research, 2020, 55 (1): 1- 16.
doi: 10.1080/00273171.2019.1574546
|
27 |
GU Y L , WEI H L , BALIKHIN M A . Nonlinear dynamic predictive model selection and interference using information criteria[J]. Systems Science & Control Engineering, 2018, 6 (1): 319- 328.
|
28 |
YANG M S , LAI C Y , LIN C Y . A robust EM clustering algorithm for Gaussian mixture models[J]. Pattern Recognition, 2012, 45 (11): 3950- 3961.
doi: 10.1016/j.patcog.2012.04.031
|
29 |
晏良, 段晓君, 刘博文, 等. 基于Kullback-Leibler距离离散度的加权代理模型[J]. 国防科技大学学报, 2019, 41 (3): 159- 165.
|
|
YAN L , DUAN X J , LIU B W , et al. Weighted surrogate models based on Kullback-Leibler divergence[J]. Journal of National University of Defense Technology, 2019, 41 (3): 159- 165.
|
30 |
VIROLI C , MCLACHLAN G J . Deep Gaussian mixture mo-dels[J]. Statistics & Computing, 2019, 29 (1): 43- 51.
|