1 |
GROSS D , LIU Y K , FLAMMIA S T , et al. Quantum state tomography via compressed sensing[J]. Physical Review Letters, 2010, 105 (15): 150401.
doi: 10.1103/PhysRevLett.105.150401
|
2 |
ZHANG J J , LI K Z , CONG S , et al. Efficient reconstruction of density matrices for high dimensional quantum state tomography[J]. Signal Processing, 2017, 139 (3): 136- 142.
|
3 |
SAYRIN C , DOTSENKO I , ZHOU X , et al. Real-time quantum feedback prepares and stabilizes photon number states[J]. Nature, 2011, 477 (7362): 73- 77.
doi: 10.1038/nature10376
|
4 |
ZHENG K , LI K Z , CONG S . A reconstruction algorithm for compressive quantum tomography using various measurement sets[J]. Scientific Reports, 2016, 6 (1): 38497.
doi: 10.1038/srep38497
|
5 |
THEKKADATH G S , GINER L , CHALICH Y , et al. Direct measurement of the density matrix of a quantum system[J]. Physical Review Letters, 2016, 117 (12): 120401.
doi: 10.1103/PhysRevLett.117.120401
|
6 |
SILBERFARB A , JESSEN P S , DEUTSCH I H . Quantum state reconstruction via continuous measurement[J]. Physical Review Letters, 2005, 95 (3): 030402.
doi: 10.1103/PhysRevLett.95.030402
|
7 |
SMITH G A , SILBERFARB A , DEUTSCH I H , et al. Efficient quantum-state estimation by continuous weak measurement and dynamical control[J]. Physical review letters, 2006, 97 (18): 180403.
doi: 10.1103/PhysRevLett.97.180403
|
8 |
唐雅茹, 丛爽, 杨靖北. 单量子比特系统状态的在线估计[J]. 自动化学报, 2020, 46 (8): 1592- 1599.
|
|
TANG Y R , CONG S , YANG J B . On-line state estimation of one-qubit system[J]. Acta Automatica Sinica, 2020, 46 (8): 1592- 1599.
|
9 |
ZHANG K , CONG S , LI K Z , et al. An online optimization algorithm for the real-time quantum state tomography[J]. Quantum Information Processing, 2020, 19 (10): 1- 17.
doi: 10.1007/s11128-020-02866-4
|
10 |
LIU Y K . Universal low-rank matrix recovery from Pauli measurements[J]. Advances in Neural Information Processing Systems, 2011, 24, 1638- 1646.
|
11 |
ZHANG J J , CONG S , LING Q , et al. An efficient and fast quantum state estimator with sparse disturbance[J]. IEEE Trans.on Cybernetics, 2018, 49 (7): 2546- 2555.
|
12 |
ZHANG K, CONG S, DING J, et al. Efficient and fast optimization algorithms for quantum state filtering and estimation[C]//Proc. of the IEEE International Conference on Intelligent Control and Information Processing, 2019: 7-13.
|
13 |
ZHANG J J , CONG S , LING Q , et al. Quantum state filter with disturbance and noise[J]. IEEE Trans.on Automatic Control, 2020, 65 (7): 2856- 2866.
doi: 10.1109/TAC.2019.2934755
|
14 |
RALPH J F , JACOBS K , HILL C D . Frequency tracking and parameter estimation for robust quantum state estimation[J]. Physical Review A, 2011, 84 (5): 052119.
doi: 10.1103/PhysRevA.84.052119
|
15 |
CONG S , TANG Y R , HARRZ S , et al. On-line quantum state estimation using continuous weak measurement and compressed sensing[J]. Science China Information Sciences, 2021, 64, 189202.
doi: 10.1007/s11432-018-9793-2
|
16 |
GRANT M, BOYD S, YE Y. CVX: Matlab software for disciplined convex programming[EB/OL]. [2020-08-13]http://stanford.edu/~boyd/cvx, 2008.
|
17 |
TSUDA K , RÄTSCH G , WARMUTH M K . Matrix exponentiated gradient updates for on-line learning and Bregman projection[J]. Journal of Machine Learning Research, 2005, 6 (7): 995- 1018.
|
18 |
YOUSSRY A , FERRIE C , TOMAMICHEL M . Efficient online quantum state estimation using a matrix exponentiated gradient method[J]. New Journal of Physics, 2019, 21 (3): 033006.
doi: 10.1088/1367-2630/ab0438
|
19 |
SUZUKI T. Dual averaging and proximal gradient descent for online alternating direction multiplier method[C]//Proc. of the International Conference on Machine Learning, 2013: 392-400.
|
20 |
WANG H, BANERJEE A. Online alternating direction method[C]//Proc. of the International Conference on Machine Learning, 2012: 1119-1126.
|
21 |
ZHANG K, CONG S, TANG Y R, et al. An efficient online estimation algorithm for evolving quantum states[C]//Proc. of the 28th European Signal Processing Conference, 2021: 2249-2253.
|
22 |
SIMON D . Kalman filtering with state constraints: a survey of linear and nonlinear algorithms[J]. IET Control Theory and Applications, 2010, 4 (8): 1303- 1318.
doi: 10.1049/iet-cta.2009.0032
|
23 |
SIMON D , CHIA T L . Kalman filtering with state equality constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (1): 128- 136.
doi: 10.1109/7.993234
|
24 |
WANG D Y , LI M D , HUANG X , et al. Kalman filtering for a quadratic form state equality constraint[J]. Journal of Guidance Control and Dynamics, 2014, 37 (3): 951- 958.
doi: 10.2514/1.62890
|
25 |
YAMAMOTO N , MIKAMI T . Entanglement-assisted quantum feedback control[J]. Quantum Information Processing, 2017, 16 (7): 1- 23.
|
26 |
HARRAZ S , CONG S . State transfer via on-line state estimation and Lyapunov-based feedback control for an n-qubit system[J]. Entropy, 2019, 21 (8): 751.
doi: 10.3390/e21080751
|
27 |
MATTINGELY J , BOYD S . Real-time convex optimization in signal processing[J]. Signal Processing Magazine, 2010, 27 (3): 50- 61.
doi: 10.1109/MSP.2010.936020
|
28 |
DING F . Decomposition based fast least squares algorithm for output error systems[J]. Signal Processing, 2013, 93 (5): 1235- 1242.
doi: 10.1016/j.sigpro.2012.12.013
|
29 |
BOYD V , FAYBUSOVICH L . Convex optimization[J]. IEEE Trans.on Automatic Control, 2006, 51 (11): 1859- 1859.
doi: 10.1109/TAC.2006.884922
|
30 |
GONCALVES D S , GOMES-RUGGIERO M A , LAVOR C , et al. A projected gradient method for optimization over density matrices[J]. Optimization Methods and Software, 2016, 31 (2): 328- 341.
doi: 10.1080/10556788.2015.1082105
|
31 |
LIANG Y C , YU H Y , PAULO E M , et al. Quantum fidelity measures for mixed states[J]. Reports on Progress in Physics, 2019, 82 (7): 076001.
doi: 10.1088/1361-6633/ab1ca4
|