系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (6): 1572-1585.doi: 10.12305/j.issn.1001-506X.2021.06.15
焦志强1,2,*, 张杰勇1, 姚佩阳1, 王勋3, 何宜超1,2
收稿日期:
2020-07-06
出版日期:
2021-05-21
发布日期:
2021-05-28
通讯作者:
焦志强
作者简介:
张杰勇(1983—), 男, 讲师, 博士后, 主要研究方向为指控组织设计、指挥信息系统|姚佩阳(1960—), 男, 教授, 硕士, 主要研究方向为数据链、指控组织设计、指挥信息系统|王勋(1990—), 男, 讲师, 博士, 主要研究方向为指控组织设计、指挥信息系统|何宜超(1996—), 男, 硕士研究生, 主要研究方向为指挥信息系统
基金资助:
Zhiqiang JIAO1,2,*, Jieyong ZHANG1, Peiyang YAO1, Xun WANG3, Yichao HE1,2
Received:
2020-07-06
Online:
2021-05-21
Published:
2021-05-28
Contact:
Zhiqiang JIAO
摘要:
针对指挥信息系统(command, control, communications, computers, intelligence, surveillance and reconnaissance, C4ISR)服务部署分散、作战平台计算/存储资源有限、演化实时性要求高的特点, 基于分层结构设计了系统状态分布式监控与演化总体架构, 并在该架构下提出了一种服务部署方案层级动态调整方法。通过定义信息流转长度与方案调整代价设计了服务部署调整方案的数学优化模型, 针对部署方案中同时包含服务部署位置和信息流转路径的特点, 将成对交换思想、最短路径规划与m-best策略相结合提出了一种贪心求解算法, 以实现调整方案的快速生成。实验证明, 该方法能够在保证系统信息流转效能的同时有效控制系统的演化范围, 适用于执行任务过程中服务部署方案的敏捷调整。
中图分类号:
焦志强, 张杰勇, 姚佩阳, 王勋, 何宜超. 基于分层结构的C4ISR服务部署分布式演化方法[J]. 系统工程与电子技术, 2021, 43(6): 1572-1585.
Zhiqiang JIAO, Jieyong ZHANG, Peiyang YAO, Xun WANG, Yichao HE. Distributed evolution method of C4ISR service deployment based on hierarchical structure[J]. Systems Engineering and Electronics, 2021, 43(6): 1572-1585.
表5
层级调整与全局调整的对比结果"
调整方式 | 调整服务数量 | 成功率/% | m取值 | 信息流转代价增量 | 调整代价 | 时间开销/s | 调整方式 | 调整服务数量 | 成功率/% | m取值 | 信息流转代价增量 | 调整代价 | 时间开销/s | |
层级调整 | 4 | 100 | 1 | 31.56 | 35.17 | 0.15 | 全局调整 | 4 | 100 | 1 | 25.80 | 64.15 | 0.53 | |
2 | 31.55 | 35.20 | 0.19 | 2 | 25.56 | 64.22 | 0.74 | |||||||
3 | 31.53 | 35.20 | 0.22 | 3 | 25.06 | 64.55 | 0.95 | |||||||
6 | 96 | 1 | 44.95 | 75.73 | 0.29 | 6 | 96 | 1 | 36.74 | 137.82 | 1.09 | |||
2 | 44.73 | 75.51 | 0.38 | 2 | 35.94 | 137.88 | 1.57 | |||||||
3 | 44.71 | 75.45 | 0.45 | 3 | 35.44 | 138.26 | 2.04 | |||||||
8 | 92 | 1 | 56.29 | 129.92 | 0.50 | 8 | 87 | 1 | 47.82 | 235.96 | 1.91 | |||
2 | 55.90 | 129.71 | 0.69 | 2 | 46.64 | 235.33 | 2.81 | |||||||
3 | 55.78 | 129.61 | 0.84 | 3 | 46.05 | 235.62 | 3.67 |
表6
不同调整代价约束下的算法时间开销"
调整代价约束 | 算法 | 实验编号 | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
σ=250 | GA | 20.74 | 10.18 | 46.94 | 39.25 | 10.85 | 10.29 | 21.62 | 27.59 | 10.23 | 28.87 |
PSO | 10.36 | 10.18 | 39.76 | 10.19 | 10.74 | 10.33 | 10.74 | 18.73 | 10.28 | 9.98 | |
ABC | 20.53 | 20.16 | 152.30 | 20.06 | 21.32 | 20.39 | 21.28 | 75.03 | 20.25 | 19.81 | |
FPA | 10.24 | 10.04 | 332.52 | 30.59 | 10.84 | 10.20 | 10.65 | 277.01 | 10.10 | 9.89 | |
WOA | 38.25 | 10.09 | 37.38 | 10.21 | 10.92 | 10.17 | 95.74 | 27.74 | 10.11 | 19.45 | |
本文算法 | 0.51 | 0.29 | 0.25 | 0.54 | 0.58 | 0.60 | 0.88 | 0.24 | 0.78 | 0.26 | |
σ=200 | GA | 20.72 | 10.99 | 21.24 | 9.63 | 32.52 | 28.95 | 20.58 | 19.91 | 21.89 | 36.90 |
PSO | 10.39 | 21.56 | 21.43 | 9.69 | 43.41 | 29.45 | 30.96 | 10.13 | 11.03 | 19.02 | |
ABC | 20.57 | 21.54 | 21.66 | 18.98 | 43.88 | 77.02 | 61.68 | 20.11 | 22.07 | 75.57 | |
FPA | 31.24 | 10.82 | 86.19 | 9.54 | 217.79 | 19.56 | 20.97 | 10.09 | 33.13 | 65.70 | |
WOA | 225.88 | 10.88 | 21.22 | 9.55 | 155.37 | 28.92 | 57.57 | 10.08 | 10.98 | 61.56 | |
本文算法 | 0.63 | 0.46 | 0.65 | 0.45 | 0.53 | 0.53 | 0.59 | 0.48 | 0.74 | 0.45 | |
σ=150 | GA | 28.74 | 75.80 | 36.99 | 10.73 | 10.60 | 10.30 | 10.69 | 43.01 | 29.64 | 43.78 |
PSO | 38.32 | 28.92 | 19.10 | 10.68 | 10.35 | 10.46 | 32.28 | 21.17 | 19.90 | 32.14 | |
ABC | 19.11 | 173.62 | 38.23 | 21.12 | 20.70 | 20.16 | 21.44 | 84.98 | 59.47 | 64.63 | |
FPA | 9.50 | 309.48 | 187.42 | 10.76 | 10.58 | 10.29 | 10.67 | 21.06 | 99.32 | 10.80 | |
WOA | 9.54 | 19.34 | 18.23 | 20.53 | 10.65 | 10.28 | 20.50 | 20.52 | 37.28 | 195.96 | |
本文算法 | 0.30 | 0.27 | 0.13 | 1.19 | 0.65 | 0.93 | 0.92 | 0.52 | 0.20 | 0.62 |
1 | 曹雷. 指挥信息系统[M]. 北京: 国防工业出版社, 2012. |
CAO L . C4ISR system[M]. Beijing: National Defense Industry Press, 2012. | |
2 | 纪浩然. 基于移动云模式的指挥信息系统架构研究[D]. 长沙: 国防科学技术大学, 2015. |
JI H R. Research on the C4ISR systems based on the mobile cloud computing[D]. Changsha: National University of Defense Technology, 2015. | |
3 | 王磊, 罗雪山, 舒振. C4ISR体系结构服务视图及其演化的形式化描述方法[J]. 国防科技大学学报, 2011, 23 (3): 138- 143. |
WANG L , LUO X S , SHU Z . Formalized description of service view and evolution within C4ISR architecture[J]. Journal of National University of Defense Technology, 2011, 23 (3): 138- 143. | |
4 | 黄海军, 陈兵, 余祥, 等. 指挥信息系统软件演化一致性问题研究[C]//第五届中国指挥控制大会论文集, 2017. |
HUANG H J, CHEN B, YU X, et al. Research on software evolution consistency of C4ISR system[C]//Proc.of the 5th China Command and Control Conference, 2017. | |
5 | 张婷婷, 王智学, 刘大伟, 等. 体系演化过程中涌现行为建模与评估[C]//第二届中国指挥控制大会, 2014. |
ZHANG T T, WANG Z X, LIU D W, et al. Emerging behavior of system of systems evolution processes modeling and evaluation[C]//Proc.of the 2nd China Command and Control Conference, 2014. | |
6 | 张杰勇, 蓝羽石, 易侃, 等. C4ISR系统指挥控制关系适应性演化模型和方法研究[J]. 系统工程与电子技术, 2015, 37 (7): 1543- 1550. |
ZHANG J Y , LAN Y S , YI K , et al. C4ISR model and solving method for adaptive evolution of command and control relationship in C4ISR system[J]. Systems Engineering and Electronics, 2015, 37 (7): 1543- 1550. | |
7 | 孙昱, 姚佩阳, 李明辉, 等. 兵力组织指挥控制结构适应性调整方法[J]. 系统工程与电子技术, 2016, 38 (9): 2086- 2092. |
SUN Y , YAO P Y , LI M H , et al. Adaptive adjusting method of command and control structure of army organization[J]. Systems Engineering and Electronics, 2016, 38 (9): 2086- 2092. | |
8 | 王勋, 姚佩阳, 张杰勇, 等. Holonic-C2组织资源调度问题研究[J]. 系统工程与电子技术, 2019, 41 (3): 564- 570. |
WANG X , YAO P Y , ZHANG J Y , et al. Research on problem of Holonic-C2 organization resource scheduling[J]. Systems Engineering and Electronics, 2019, 41 (3): 564- 570. | |
9 |
FARAGARDI H R , SEDGHPOUR M R , FAZLIAHMADI S , et al. GRP-HEFT: a budget-constrained resource provisioning scheme for workflow scheduling in IaaS clouds[J]. IEEE Trans.on Parallel and Distributed Systems, 2020, 31 (6): 1239- 1254.
doi: 10.1109/TPDS.2019.2961098 |
10 | DOMANAL S , GUDDETI R M , BUYYA R . A hybrid bio-inspired algorithm for scheduling and resource management in cloud environment[J]. IEEE Trans.on Services Computing, 2017, 13 (1): 3- 15. |
11 |
ZHANG Y . Resource scheduling and delay analysis for workflow in wireless small cloud[J]. IEEE Trans.on Mobile Computing, 2018, 17 (3): 675- 687.
doi: 10.1109/TMC.2017.2734083 |
12 |
KONSTANTINOS P , JAVAD G . Randomized algorithms for scheduling multi-resource jobs in the cloud[J]. IEEE/ACM Trans.on Networking, 2018, 26 (5): 2202- 2215.
doi: 10.1109/TNET.2018.2863647 |
13 | LI H, CI S, YANG C, et al. Moving to green edges: a cooperative MEC framework to reduce energy demand of clouds[C]//Proc.of the IEEE Globecom Workshops, 2019. |
14 | GODBOLE N S, LAMB J. Research into making healthcare green with cloud, green IT, and data science to reduce healthcare costs and combat climate change[C]//Proc.of the IEEE 9th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, 2018. |
15 | ISMAIL L , FARDOUN A A . Energy-aware task scheduling (eats) framework for efficient energy in smart cities cloud computing infrastructures[J]. International Journal of Thermal & Environmental Engineering, 2016, 13 (1/2): 37- 48. |
16 |
JIAO Z Q , ZHANG J Y , YAO P Y , et al. Service deployment of C4ISR based on genetic simulated annealing algorithm[J]. IEEE Access, 2020, 8, 65498- 65512.
doi: 10.1109/ACCESS.2020.2981624 |
17 | SALAHT F A , FRÉDÉRIC D , LEBRE A . An overview of service placement problem in fog and edge Computing[J]. ACM Computing Surveys, 2019, 53 (3): 65. |
18 | TEEMU L , CLAUDIO S , GIANCARLO F . Service modeling for opportunistic edge computing systems with feature engineering[J]. Computer Communications, 2020, 157 (1): 308- 319. |
19 | LIM J , YU H , GIL J . An intelligent residual resource monitoring scheme in cloud computing environments[J]. Journal of Information Processing Systems, 2018, 14 (6): 1480- 1493. |
20 | HAUSER C B, WESNER S. Reviewing cloud monitoring: towards cloud resource profiling[C]//Proc.of the IEEE 11th International Conference on Cloud Computing, 2018: 678-685. |
21 | PELISSERO N, LASO P M, PUENTES J. Naval cyber-physical anomaly propagation analysis based on a quality assessed graph[C]//Proc.of the International Conference on Cyber Situational Awareness, Data Analytics and Assessment, 2020. |
22 | YUAN Y, ANU H W, SHI B L, et al. Learning-based anomaly cause tracing with synthetic analysis of logs from multiple cloud service components[C]//Proc.of the IEEE 43rd Annual Computer Software and Applications Conference, 2019: 66-71. |
23 | LIN J, ZHANG Q, BANNAZADEH H, et al. Automated anomaly detection and root cause analysis in virtualized cloud infrastructures[C]//Proc.of the NOMS IEEE/IFIP Network Operations and Management Symposium, 2016: 550-556. |
24 | HAN X. Optimization-based decision support algorithms for network identification and dynamic resource management[D]. Mansfield: Connecticut University, 2016. |
25 |
HAN X , BUI H , MANDAL S , et al. Optimization-based decision support software for a team-in-the-loop experiment: asset package selection and planning[J]. IEEE Trans.on Systems, Man, and Cybernetics, 2013, 43 (2): 237- 251.
doi: 10.1109/TSMCA.2012.2201467 |
26 | LEONORI S , PASCHERO M , MASCIOLI F M F , et al. Optimization strategies for microgrid energy management systems by genetic algorithms[J]. Applied Soft Computing, 2019, 86, 105903. |
27 |
AJEIL F H , IBRAHEEM I K , SAHIB M A , et al. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm[J]. Applied Soft Computing, 2020, 89, 106076.
doi: 10.1016/j.asoc.2020.106076 |
28 |
CALISKAN A , CIL Z A , BADEM H , et al. Regression based neuro-fuzzy network trained by ABC algorithm for high-density impulse noise elimination[J]. IEEE Trans.on Fuzzy Systems, 2020, 28 (6): 1084- 1095.
doi: 10.1109/TFUZZ.2020.2973123 |
29 |
BOUAZIZ H , BERGHIDA M , LEMOUARI A , et al. Solving the generalized cubic cell formation problem using discrete flower pollination algorithm[J]. Expert Systems with Applications, 2020, 150, 113345.
doi: 10.1016/j.eswa.2020.113345 |
30 | MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95 (5): 51- 67. |
[1] | 冯豪博, 胡桥, 赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44(7): 2251-2262. |
[2] | 尹洋, 杨全顺, 王征, 刘洋. 通信距离约束下的无人船集群覆盖搜索方法[J]. 系统工程与电子技术, 2022, 44(12): 3821-3828. |
[3] | 杨清清, 高盈盈, 郭玙, 夏博远, 杨克巍. 基于深度强化学习的海战场目标搜寻路径规划[J]. 系统工程与电子技术, 2022, 44(11): 3486-3495. |
[4] | 马威强, 高永琪, 赵苗. 基于全局最优和差分变异的头脑风暴优化算法[J]. 系统工程与电子技术, 2022, 44(1): 270-278. |
[5] | 王文明, 杜佳璐. 基于正六边形栅格JPS算法的智能体路径规划[J]. 系统工程与电子技术, 2021, 43(12): 3635-3642. |
[6] | 李亚南, 黄海滨, 陈亮名, 庄宇飞, 王晓丽. 变化海流环境下AUV能量最优三维路径规划[J]. 系统工程与电子技术, 2021, 43(12): 3667-3674. |
[7] | 李文刚, 汪流江, 方德翔, 李玉玮, 黄郡. 联合A*与动态窗口法的路径规划算法[J]. 系统工程与电子技术, 2021, 43(12): 3694-3702. |
[8] | 陈岱岱, 李玩幽. 带拖线阵的水面无人艇局部路径规划算法[J]. 系统工程与电子技术, 2020, 42(9): 1988-1994. |
[9] | 张泉先, 曾斌, 李厚朴. 海况影响下的分布式海战补给路径规划方法[J]. 系统工程与电子技术, 2020, 42(10): 2312-2319. |
[10] | 杨秀霞, 曹唯一, 张毅. 时间和角度约束下的双圆弧路径规划[J]. 系统工程与电子技术, 2019, 41(8): 1835-1843. |
[11] | 胡腾, 刘占军, 刘洋, 夏帅帅, 陈前斌. 多无人机3D侦察路径规划[J]. 系统工程与电子技术, 2019, 41(7): 1551-1559. |
[12] | 高春庆, 寇英信, 李战武, 徐安, 李游, 常一哲. 小型无人机协同覆盖侦察路径规划[J]. 系统工程与电子技术, 2019, 41(6): 1294-1299. |
[13] | 王瑛, 郑煜坤, 姚頔, 李正欣, 李超. 危险天气下改航路径网络规划[J]. 系统工程与电子技术, 2019, 41(6): 1309-1315. |
[14] | 吴云华, 牛康, 李磊, 陈志明. 基于3D-APF和约束动力学的无人机编队飞行控制[J]. 系统工程与电子技术, 2018, 40(5): 1104-1108. |
[15] | 甄岩, 李兴, 王汝言. 带有群体智能的能量感知分层数据转发机制[J]. 系统工程与电子技术, 2017, 39(9): 2109-2118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||