1 |
TARIQ F , KHANDAKER M R A , WONG K K , et al. A speculative study on 6G[J]. IEEE Wireless Communications, 2020, 27 (4): 118- 125.
doi: 10.1109/MWC.001.1900488
|
2 |
Federal Communications Commission . Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies[J]. Et Docket, 2003, 3 (108): 5- 57.
|
3 |
LETAIEF K B , CHEN W , SHI Y , et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57 (8): 84- 90.
doi: 10.1109/MCOM.2019.1900271
|
4 |
ZOU Y L , WANG X B , HANZO L , et al. A survey on wireless security: technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104 (9): 1727- 1765.
doi: 10.1109/JPROC.2016.2558521
|
5 |
姚富强. 通信抗干扰工程与实践[M]. 第2版. 北京: 电子工业出版社, 2012.
|
|
YAO F Q . Communication anti-jamming engineering and practice[M]. 2ed. Beijing: Publishing House of Electronics Industry, 2012.
|
6 |
ZHANG L Y , GUAN Z Y , MELODIA T . United against the enemy: anti-jamming based on cross-layer cooperation in wireless networks[J]. IEEE Trans.on Wireless Communications, 2016, 15 (8): 5733- 5747.
doi: 10.1109/TWC.2016.2569083
|
7 |
LIU X , XU Y H , JIA L L , et al. Anti-jamming communications using spectrum waterfall: a deep reinforcement learning approach[J]. IEEE Communications Letters, 2018, 22 (5): 998- 1001.
doi: 10.1109/LCOMM.2018.2815018
|
8 |
WU Y , WANG B , LIU K J , et al. Anti-jamming games in multi-channel cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 30 (1): 4- 15.
|
9 |
YANG D J , XUE G L , ZHANG J , et al. Coping with a smart jammer in wireless networks: a Stackelberg game approach[J]. IEEE Trans.on Wireless Communications, 2013, 12 (8): 4038- 4047.
doi: 10.1109/TWC.2013.071913121570
|
10 |
SAGDUYU Y E , BERRY R A , EPHREMIDES A . Jamming games in wireless networks with incomplete information[J]. IEEE Communications Magazine, 2011, 49 (8): 112- 118.
doi: 10.1109/MCOM.2011.5978424
|
11 |
ZHU H J , FANG C L H , LIU Y , et al. You can jam but you cannot hide: defending against jamming attacks for geo-location database driven spectrum sharing[J]. IEEE Journal on Selected Areas in Communications, 2016, 34 (10): 2723- 2737.
doi: 10.1109/JSAC.2016.2605799
|
12 |
SUTTON R S , BARTO A G . Reinforcement learning: an introduction[M]. Massachusetts: MIT Press, 2018.
|
13 |
WATKINS C J C H , DAYAN P . Q-learning[J]. Machine Learning, 1992, 8 (3/4): 279- 292.
doi: 10.1023/A:1022676722315
|
14 |
MACHUZAK S, JAYAWEERA S K. Reinforcement learning based anti-jamming with wideband autonomous cognitive radios[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2016.
|
15 |
SINGH S, TRIVEDI A. Anti-jamming in cognitive radio networks using reinforcement learning algorithms[C]//Proc. of the 9th International Conference on Wireless and Optical Communications Networks, 2012.
|
16 |
AREF M A, JAYAWEERA S K, MACHUZAK S. Multi-agent reinforcement learning based cognitive anti-jamming[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2017.
|
17 |
POWELL W B . Approximate dynamic programming: solving the curses of dimensionality[M]. New Jersey: Wiley, 2007.
|
18 |
BROWNE D W. Predicting communications activity in the radio spectrum[C]//Proc. of the Conference Record of the 46th Asilomar Conference on Signals, Systems and Computers, 2012: 1069-1073.
|
19 |
TUMULURU V K , WANG P , NIYATO D . Channel status prediction for cognitive radio networks[J]. Wireless Communications and Mobile Computing, 2012, 12 (10): 862- 874.
doi: 10.1002/wcm.1017
|
20 |
NGUYEN A, YOSINSKI J, CLUNE J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 427-436.
|
21 |
PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//Proc. of the IEEE European Symposium on Security and Privacy, 2016: 372-387.
|
22 |
李潮, 张巨泉. 雷达频域主要抗干扰技术及其效果度量[J]. 舰船电子对抗, 2005, 28 (1): 16- 20.
|
|
LI C , ZHANG J Q . Chief Anti-jamming technologies of radar in frequency domain and their effectiveness measurement[J]. Shipboard Electronic Countermeasure, 2005, 28 (1): 16- 20.
|
23 |
贲德, 王峰, 雷志勇. 基于认知原理的机载雷达抗干扰技术研究[J]. 中国电子科学研究院学报, 2013, 8 (4): 368- 372.
|
|
BEN D , WANG F , LEI Z Y . Key anti-jamming technique of airborne radar based on cognition[J]. Journal of China Academy of Electronics and Information Technology, 2013, 8 (4): 368- 372.
|
24 |
周红平. 雷达信号处理若干关键技术的研究[D]. 合肥: 中国科学技术大学, 2010.
|
|
ZHOU H P. Research on some key technologies of radar signal processing[D]. Hefei: University of Science and Technology of China, 2010.
|
25 |
RICHARDS M A . Fundamentals of radar signal processing[M]. New York: McGraw-Hill Education, 2005.
|
26 |
TSILIGKARIDIS T, ROMERO D. Reinforcement learning with budget-constrained nonparametric function approximation for opportunistic spectrum access[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2018: 579-583.
|
27 |
XU X , HU D W , LU X C . Kernel-based least squares policy iteration for reinforcement learning[J]. IEEE Trans.on Neural Networks, 2007, 18 (4): 973- 992.
doi: 10.1109/TNN.2007.899161
|