1 |
尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014: 132- 133.
|
|
WEI X K , YANG L , LIU F , et al. Aer engine prediction and health management[M]. Beijing: National Defense Industry Press, 2014: 132- 133.
|
2 |
ELSHEIKH A , YACOUT S , OUALI M S . Bidirectional handshaking LSTM for remaining useful life prediction[J]. Neurocomputing, 2019, 323, 148- 156.
doi: 10.1016/j.neucom.2018.09.076
|
3 |
PENG Y Z , WANG Y , ZI Y Y . Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life[J]. IEEE Trans.on Industrial Informatics, 2018, 15 (2): 822- 832.
|
4 |
LEI Y G , LI N P , GONTARZ S , et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568
|
5 |
LI N , LEI Y , LIN J , et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (12): 7762- 7773.
doi: 10.1109/TIE.2015.2455055
|
6 |
PECHT M . Prognostics and health management of slsctronics[M]. New Jersey: Wiley Online Library, 2008.
|
7 |
ELLEFSEN A L , BJORLYKHAUG E , ESOY V , et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183, 240- 251.
|
8 |
赵广社, 吴思思, 荣海军. 多源统计数据驱动的航空发动机剩余寿命预测方法[J]. 西安交通大学学报, 2017, 51 (11): 150- 155.
|
|
ZHAO G S , WU S S , RONG H J . A multi-source statics data-driven method for remaining useful life prediction of aircraft engine[J]. Journal of Xi'an Jiaotong University, 2017, 51 (11): 150- 155.
|
9 |
黄亮, 刘君强, 贡英杰. 基于一致性检验的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2018, 40 (12): 2736- 2742.
|
|
HUANG L , LIU J Q , GONG Y J . Residual lifetime prediction of aeroengines based on the consistency test[J]. Systems Engi-neering and Electronics, 2018, 40 (12): 2736- 2742.
|
10 |
车畅畅, 王华伟, 倪晓梅, 等. 基于改进GRU的航空发动机剩余寿命预测[J]. 航空计算技术, 2020, 50 (1): 13- 16.
|
|
CHE C C , WANG H W , NI X M , et al. Residual life prediction of aeroengine based on improved GRU[J]. Aeronautical Computing Technique, 2020, 50 (1): 13- 16.
|
11 |
宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25 (7): 1611- 1619.
|
|
SONG Y , XIA T B , ZHENG Y , et al. Remaining useful life prediction of turbofan engine based on autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25 (7): 1611- 1619.
|
12 |
WANG T Y. Trajectory similarity based prediction for remaining useful life estimation[D]. Cincinnati: University of Cincinnati, 2010.
|
13 |
SHI J M , LI Y X , WANG G , et al. Health index synthetization and remaining useful life estimation for turbofan engines based on run-to-failure datasets[J]. Maintenance and Reliability, 2016, 18 (4): 621- 631.
doi: 10.17531/ein.2016.4.18
|
14 |
张妍, 王村松, 陆宁云, 等. 基于退化特征相似性的航空发动机寿命预测[J]. 系统工程与电子技术, 2019, 41 (6): 1414- 1421.
|
|
ZANG Y , WANG C S , LU N Y , et al. Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2019, 41 (6): 1414- 1421.
|
15 |
曹惠玲, 崔科璐, 梁佳旺. 基于多参数融合相似的民航发动机寿命预测[J]. 中国机械工程, 2020, 31 (7): 781- 787.
|
|
CAO H L , CUI K L , LIANG J W . Multi-parameter fusion similarity-based method for remaining useful life prediction of civil aviation engine[J]. China Mechanical Engineering, 2020, 31 (7): 781- 787.
|
16 |
YU W M , KIM Y , MECHEFSKE C . An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering and System Safety, 2020, 199, 106926.
doi: 10.1016/j.ress.2020.106926
|
17 |
GUO L, LEI Y G, LI N P, et al. Deep convolution feature learning for health indicator construction of bearings[C]//Proc. of the Prognostics and System Health Management Conference, 2017.
|
18 |
LIAO L X , JIN W J , PAVEL R . Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Trans.on Industrial Electro-nics, 2016, 63 (11): 7076- 7083.
doi: 10.1109/TIE.2016.2586442
|
19 |
HOU M R , PI D C , LI B R . Similarity-based deep learning approach for remaining useful life prediction[J]. Measurement, 2020, 159, 107788.
doi: 10.1016/j.measurement.2020.107788
|
20 |
赵洪利, 张猛. 基于随机维纳过程的航空发动机性能衰退研究[J]. 推进技术, 2021, 42 (3): 488- 494.
|
|
ZHAO H L , ZHANG M . Research on performance degradation of aeroengines baesd on stochastic wiener process[J]. Journal of Propulsion Technology, 2021, 42 (3): 488- 494.
|
21 |
Department of Denfense. MIL-HDBK-516C ariworthiness certification criteria[S]. Washington: Department of Defense, 2014.
|
22 |
BENZAKEIN M. Propulsion strategy for the 21st century-a vision into the future[C]//Proc. of the ISABE, 2001.
|
23 |
Department of Denfense. JSSG 2007B Joint service specification guide: engines, aircraft, turbine[S]. Washington: Department of defense, 2008: 1-575.
|
24 |
Federal Aviation Administration. FAR 33 airworthiness standards: aircraft engine[S]. Washington: Federal Aviation Administration, 1984.
|
25 |
YU W , KIM I Y , MECHEFSKE C K . Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129, 764- 780.
doi: 10.1016/j.ymssp.2019.05.005
|
26 |
ZHANG Q , TSE W T , WAN X , et al. Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory[J]. Expert Systems with Applications, 2015, 42 (5): 2353- 2360.
doi: 10.1016/j.eswa.2014.10.041
|
27 |
KHELIF R, MALINOWSKI S, CHEBEL-MORELLO B, et al. RUL prediction based on a new similarity-instance based approach[C]//Proc. of the IEEE 23rd International Symposium on Industrial Electronics, 2014: 2463-2468.
|
28 |
WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]//Proc. of the IEEE International Confe-rence on Prognostics and Health Management, 2008: 4-9.
|
29 |
EMMANUEL R. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: results and comparisons on C-MAPSS datasets[C]//Proc. of the 2nd European Conference of the Prognostics and Health Management Society, 2014.
|
30 |
SEXENA A, KAI G, SIMO N, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2008.
|
31 |
HANZ R . Advanced control of turbofan engines[M]. Germany: Springer, 2012.
|