1 |
HE M , ALBA A M , BASTA A , et al. Flexibility in softwarized networks: classifications and research challenges[J]. IEEE Communications Surveys and Tutorials, 2019, 21 (3): 2600- 2636.
doi: 10.1109/COMST.2019.2892806
|
2 |
冉金鹏, 赵尚弘, 王翔, 等. 面向SDN的生存性虚拟网络映射算法[J]. 系统工程与电子技术, 2020, 42 (5): 1182- 1189.
|
|
RAN J P , ZHAO S H , WANG X , et al. Survivability virtual network embedding algorithm oriented to SDN[J]. Systems Engineering and Electronics, 2020, 42 (5): 1182- 1189.
|
3 |
BONFIM M , DIAS K L , FERNANDES S , et al. Integrated NFV/SDN architectures: a systematic literature review[J]. ACM Computing Surveys, 2019, 51 (6): 39.
|
4 |
LI Z F , LU Z B , DENG S H , et al. A self-adaptive virtual network embedding algorithm based on software-defined networks[J]. IEEE Trans.on Network and Service Management, 2019, 16 (1): 362- 373.
doi: 10.1109/TNSM.2018.2876789
|
5 |
韩晓阳, 孟相如, 康巧燕, 等. 基于二分图最优匹配的虚拟网络映射算法[J]. 系统工程与电子技术, 2019, 41 (12): 2891- 2898.
|
|
HAN X Y , MENG X R , KANG Q Y , et al. Virtual network embedding algorithm based on bipartite graph optimal matching[J]. Systems Engineering and Electronics, 2019, 41 (12): 2891- 2898.
|
6 |
CAO H T , ZHU H B , YANG L X , et al. Collaborative attri-butes and resources for single-stage virtual network mapping in network virtualization[J]. Journal of Communications and Networks, 2020, 22 (1): 61- 71.
doi: 10.1109/JCN.2019.000045
|
7 |
OHSITA Y , MIYAMURA T , ARAKAWA S , et al. Gradually reconfiguring virtual network topologies based on estimated traffic matrices[J]. IEEE/ACM Trans.on Networking, 2010, 18 (1): 177- 189.
doi: 10.1109/TNET.2009.2022263
|
8 |
DIN D , CHOU C . Virtual topology reconfiguration for mixed-line-rate optical WDM networks under dynamic traffic[J]. Photonic Network Communication, 2015, 30 (2): 1- 19.
doi: 10.1007/s11107-015-0517-z
|
9 |
唐伦, 杨希希, 施颖洁, 等. 无线虚拟网络中基于自回归滑动平均预测的在线自适应虚拟资源分配算法[J]. 电子与信息学报, 2019, 41 (1): 16- 23.
|
|
TANG L , YANG X X , SHI Y J , et al. ARMA-prediction based online adaptive dynamic resource allocation in wireless virtualized networks[J]. Journal of Electronics & Information Technology, 2019, 41 (1): 16- 23.
|
10 |
QIN Y , LYU J B , JIANG L R , et al. An improved ARIMA-based traffic anomaly detection algorithm for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2016, 2016, 28.
|
11 |
黄伟, 刘存才, 祁思博. 针对设备端口链路的LSTM网络流量预测与链路拥塞方案[J]. 网络与信息安全学报, 2019, 5 (6): 50- 57.
|
|
HUANG W , LIU C C , QI S B . LSTM network traffic prediction and link congestion warning scheme for single port and single link[J]. Chinese Journal of Network and Information Security, 2019, 5 (6): 50- 57.
|
12 |
GAO F. Network traffic prediction based on neural network[C]//Proc. of the International Conference on Intelligent Transportation, 2015: 527-530.
|
13 |
WEI D F . Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm[J]. Neural Computing & Applications, 2016, 28 (8): 2303- 2312.
|
14 |
赵建龙, 曲桦, 赵季红, 等. 基于Morlet-SVR和ARIMA组合模型的网络流量预测[J]. 北京邮电大学学报, 2016, 39 (2): 53- 57.
|
|
ZHAO J L , QU H , ZHAO J H , et al. A comprehensive forecasting model for network traffic based on morlet-SVR and ARIMA[J]. Journal of Beijing University of Posts and Telecommunication, 2016, 39 (2): 53- 57.
|
15 |
SU Y Z , MENG X R , YU Z H , et al. Cognitive virtual network topology reconfiguration method based on traffic prediction and link importance[J]. IEEE Access, 2019, 7, 138915- 138926.
doi: 10.1109/ACCESS.2019.2943012
|
16 |
HUANG L L , WANG J . Forecasting energy fluctuation model by wavelet decomposition and stochastic recurrent wavelet neural network[J]. Neurocomputing, 2018, 309 (2): 70- 82.
|
17 |
田中大, 张超, 李树江, 等. 基于相空间重构与最小二乘支持向量机的时延预测[J]. 电子学报, 2017, 45 (5): 1044- 1051.
|
|
TIAN Z D , ZHANG C , LI S J , et al. Time-delay prediction based on phase space reconstruction and least squares support vector machine[J]. Acta Electronica Sinica, 2017, 45 (5): 1044- 1051.
|
18 |
HUANG G B, ZHU Q Y, SIEW C, et al. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proc. of the International Joint Conference on Neural Network, 2004: 985-990.
|