| 1 | 
																						 
											   HOHMAN F ,  PARK H ,  ROBINSON C , et al.  SUMMIT: scaling deep learning interpretability by visualizing activation and attribution summarizations[J]. IEEE Trans.on Visualization & Computer Graphics, 2019, 26 (1): 1096- 1106. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   WU C ,  GALES M ,  RAGNI A , et al.  Improving interpretability and regularization in deep learning[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2018, 26 (2): 256- 265. 
											 												 
																									doi: 10.1109/TASLP.2017.2774919
																																			 											 | 
										
																													
																						| 3 | 
																						 
											   ZHANG K ,  GUO Y R ,  WANG X S , et al.  Multiple feature re-weight DenseNet for image classification[J]. IEEE Access, 2019, 7, 9872- 9880. 
											 												 
																									doi: 10.1109/ACCESS.2018.2890127
																																			 											 | 
										
																													
																						| 4 | 
																						 
											   SONG J M ,  KIM W ,  PARK K R .  Finger-vein recognition based on deep DenseNet using composite image[J]. IEEE Access, 2019, 7, 66845- 66863. 
											 												 
																									doi: 10.1109/ACCESS.2019.2918503
																																			 											 | 
										
																													
																						| 5 | 
																						 
											 United States Department of Defense. Interoperability and performance standards for medium and high frequency radio systems[P]. U.S. : Standard MIL-STD-188-141B, 1999.
											 											 | 
										
																													
																						| 6 | 
																						 
											  游翔, 葛卫丽.  飞信协议识别与多元通联关系提取方法[J]. 现代电子技术, 2014, 37 (21): 19- 23. 
											 											 | 
										
																													
																						 | 
																						 
											   YOU X ,  GE W L .  Protocol identification and multi-conversation relationship extraction in Fetion[J]. Modern Electronics Technique, 2014, 37 (21): 19- 23. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   PROTAS É ,  BRATTI J D ,  GRYA J F O , et al.  Visualization methods for image transformation convolutional neural networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (7): 2231- 2243. 
											 												 
																									doi: 10.1109/TNNLS.2018.2881194
																																			 											 | 
										
																													
																						| 8 | 
																						 
											 DUAN P H, KANG X D, LI S T. Convolutional neural network for natural color visualization of hyperspectral images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 3372-3375.
											 											 | 
										
																													
																						| 9 | 
																						 
											 ZEILER, MATTHEW D, ROB F. Visualizing and understanding convolutional networks[C]//Proc. of the European Conference on Computer Vision, 2014: 818-833.
											 											 | 
										
																													
																						| 10 | 
																						 
											 SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: the all convolutional net[C]//Proc. of the International Conference on Learning Representations, 2014.
											 											 | 
										
																													
																						| 11 | 
																						 
											   SELVARAJU R R ,  COGSWELL M ,  DAS A , et al.  Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359. 
											 												 
																									doi: 10.1007/s11263-019-01228-7
																																			 											 | 
										
																													
																						| 12 | 
																						 
											 ZHANG Q S, WU Y N, ZHU S C. Interpretable convolutional neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8827-8836.
											 											 | 
										
																													
																						| 13 | 
																						 
											 WU T F, SUN W, LI X L, et al. Towards interpretable R-CNN by unfolding latent structures[EB/OL]. [2020-05-01]. https://arxiv.org/abs/1711.05226.
											 											 | 
										
																													
																						| 14 | 
																						 
											   ZHANG Q S ,  ZHU S C .  Visual interpretability for deep learning: a survey[J]. Journal of Zhejiang University Science C, 2018, 19 (1): 27- 39. 
											 												 
																									doi: 10.1631/FITEE.1700808
																																			 											 | 
										
																													
																						| 15 | 
																						 
											 RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?": explaining the predictions of any classifier[C]//Proc. of the North American Chapter of the Association for Computational Linguistics, 2016: 97-101.
											 											 | 
										
																													
																						| 16 | 
																						 
											 NICOLAS P, MCDANIEL P D. Deep k-nearest neighbors: towards confident, interpretable and robust deep learning[EB/OL]. [2020-05-01]. https://arxiv.org/abs/1803.04765.
											 											 | 
										
																													
																						| 17 | 
																						 
											 RU C, CAO J W. Radar emitter identification with bispectrum based LBP and extreme learning machine[C]//Proc. of the IEEE International Conference on Digital Signal Processing, 2018.
											 											 | 
										
																													
																						| 18 | 
																						 
											   WANG G B ,  GU F S ,  REHAB I , et al.  A sparse modulation signal bispectrum analysis method for rolling element bearing diagnosis[J]. Mathematical Problems in Engineering, 2018, 4, 1- 12. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   MENDIS G J ,  JIN W K ,  MADANAYAKE A .  Deep learning based radio-signal identification with hardware design[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (5): 2516- 2531. 
											 												 
																									doi: 10.1109/TAES.2019.2891155
																																			 											 | 
										
																													
																						| 20 | 
																						 
											  李雨珊, 谢非佚, 陈松林, 等.  适合终端的射频指纹信号特征提取及识别[J]. 通信技术, 2018, 51 (1): 63- 66. 
											 											 | 
										
																													
																						 | 
																						 
											   LI Y S ,  XIE F Y ,  CHEN S L , et al.  Feature extraction and recognition of radio frequency fingerprint signal suitable for terminal[J]. Communications Technology, 2018, 51 (1): 63- 66. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   O'SHEA T J ,  ROY T ,  CLANCY T C .  Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179. 
											 												 
																									doi: 10.1109/JSTSP.2018.2797022
																																			 											 |