1 |
HOHMAN F , PARK H , ROBINSON C , et al. SUMMIT: scaling deep learning interpretability by visualizing activation and attribution summarizations[J]. IEEE Trans.on Visualization & Computer Graphics, 2019, 26 (1): 1096- 1106.
|
2 |
WU C , GALES M , RAGNI A , et al. Improving interpretability and regularization in deep learning[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2018, 26 (2): 256- 265.
doi: 10.1109/TASLP.2017.2774919
|
3 |
ZHANG K , GUO Y R , WANG X S , et al. Multiple feature re-weight DenseNet for image classification[J]. IEEE Access, 2019, 7, 9872- 9880.
doi: 10.1109/ACCESS.2018.2890127
|
4 |
SONG J M , KIM W , PARK K R . Finger-vein recognition based on deep DenseNet using composite image[J]. IEEE Access, 2019, 7, 66845- 66863.
doi: 10.1109/ACCESS.2019.2918503
|
5 |
United States Department of Defense. Interoperability and performance standards for medium and high frequency radio systems[P]. U.S. : Standard MIL-STD-188-141B, 1999.
|
6 |
游翔, 葛卫丽. 飞信协议识别与多元通联关系提取方法[J]. 现代电子技术, 2014, 37 (21): 19- 23.
|
|
YOU X , GE W L . Protocol identification and multi-conversation relationship extraction in Fetion[J]. Modern Electronics Technique, 2014, 37 (21): 19- 23.
|
7 |
PROTAS É , BRATTI J D , GRYA J F O , et al. Visualization methods for image transformation convolutional neural networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (7): 2231- 2243.
doi: 10.1109/TNNLS.2018.2881194
|
8 |
DUAN P H, KANG X D, LI S T. Convolutional neural network for natural color visualization of hyperspectral images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 3372-3375.
|
9 |
ZEILER, MATTHEW D, ROB F. Visualizing and understanding convolutional networks[C]//Proc. of the European Conference on Computer Vision, 2014: 818-833.
|
10 |
SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: the all convolutional net[C]//Proc. of the International Conference on Learning Representations, 2014.
|
11 |
SELVARAJU R R , COGSWELL M , DAS A , et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359.
doi: 10.1007/s11263-019-01228-7
|
12 |
ZHANG Q S, WU Y N, ZHU S C. Interpretable convolutional neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8827-8836.
|
13 |
WU T F, SUN W, LI X L, et al. Towards interpretable R-CNN by unfolding latent structures[EB/OL]. [2020-05-01]. https://arxiv.org/abs/1711.05226.
|
14 |
ZHANG Q S , ZHU S C . Visual interpretability for deep learning: a survey[J]. Journal of Zhejiang University Science C, 2018, 19 (1): 27- 39.
doi: 10.1631/FITEE.1700808
|
15 |
RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?": explaining the predictions of any classifier[C]//Proc. of the North American Chapter of the Association for Computational Linguistics, 2016: 97-101.
|
16 |
NICOLAS P, MCDANIEL P D. Deep k-nearest neighbors: towards confident, interpretable and robust deep learning[EB/OL]. [2020-05-01]. https://arxiv.org/abs/1803.04765.
|
17 |
RU C, CAO J W. Radar emitter identification with bispectrum based LBP and extreme learning machine[C]//Proc. of the IEEE International Conference on Digital Signal Processing, 2018.
|
18 |
WANG G B , GU F S , REHAB I , et al. A sparse modulation signal bispectrum analysis method for rolling element bearing diagnosis[J]. Mathematical Problems in Engineering, 2018, 4, 1- 12.
|
19 |
MENDIS G J , JIN W K , MADANAYAKE A . Deep learning based radio-signal identification with hardware design[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (5): 2516- 2531.
doi: 10.1109/TAES.2019.2891155
|
20 |
李雨珊, 谢非佚, 陈松林, 等. 适合终端的射频指纹信号特征提取及识别[J]. 通信技术, 2018, 51 (1): 63- 66.
|
|
LI Y S , XIE F Y , CHEN S L , et al. Feature extraction and recognition of radio frequency fingerprint signal suitable for terminal[J]. Communications Technology, 2018, 51 (1): 63- 66.
|
21 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|