1 |
SIVAN K , PANDIAN S . An overview of reusable launch vehicle technology demonstrator[J]. Current Science, 2018, 114 (1): 38- 47.
doi: 10.18520/cs/v114/i01/38-47
|
2 |
NAIR P G, JOSHI A. Effect of maximum angle of attack on path constraints and flyability for winged re-entry vehicles[C]//Proc. of the AIAA SciTech Forum, 2019: 0263.
|
3 |
LU P . Entry guidance: a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (3): 713- 728.
doi: 10.2514/1.62605
|
4 |
XUE S B , LU P . Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (4): 1273- 1281.
doi: 10.2514/1.49557
|
5 |
SAGLIANO M, MOOIJ E. Optimal drag-energy entry guidance via pseudo spectral convex optimization[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2018: 1315.
|
6 |
WEBB K, LU P. Entry guidance by onboard trajectory planning and tracking[C]//Proc. of the AIAA Atmospheric Flight Mechamics Conference, 2016.
|
7 |
HE R Z , LIU L H , TANG G J , et al. Rapid generation of entry trajectory with multiple no-fly zone constraints[J]. Advances in Space Research, 2017, 60, 1430- 1442.
doi: 10.1016/j.asr.2017.06.046
|
8 |
ZHAO D J , SONG Z Y . Reentry trajectory optimization with waypoint and no-fly zone constraints using multi-phase convex programming[J]. Acta Astronautica, 2017, 137, 60- 69.
doi: 10.1016/j.actaastro.2017.04.013
|
9 |
LU Q , ZHOU J . Re-entry guidance for hypersonic vehicle satisfying no-fly zone constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40 (13): 3899- 3908.
doi: 10.1177/0142331217735050
|
10 |
JORRIS T R , COBB R G . Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 551- 572.
doi: 10.2514/1.37030
|
11 |
ZHANG H P , WANG H L , LI N , et al. Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones[J]. Neural Computing and Applications, 2018, 32, 2735- 2749.
doi: 10.1007/s00521-018-3764-y
|
12 |
YONG E M , QIAN W Q , HE K F . An adaptive predictor corrector reentry guidance based on self-definition waypoints[J]. Aerospace Science and Technology, 2014, 39, 211- 221.
doi: 10.1016/j.ast.2014.08.004
|
13 |
LI Z H , YANG X J , SUN X D , et al. Improved artificial potential field based lateral entry guidance for waypoints passage and no-fly zones avoidance[J]. Aerospace Science and Techno-logy, 2019, 86, 119- 131.
doi: 10.1016/j.ast.2019.01.015
|
14 |
LIN H B, DU Y L, MOOIJ E, et al. Improved predictor-corrector guidance with hybrid lateral logic for no-fly zone avoidance[C]//Proc. of the International Conference on Control, Automation and Information Sciences, 2019.
|
15 |
GAO Y , CAI G B , YANG X G , et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access, 2019, 7, 119246- 119258.
doi: 10.1109/ACCESS.2019.2936974
|
16 |
LIANG Z X , REN Z . Tentacle-based guidance for entry flight with no-fly zone constraint[J]. Journal of Guidance, Control, and Dynamic, 2018, 41 (4): 991- 1000.
|
17 |
WANG T , ZHANG H B , TANG G J . Predictor-corrector entry guidance with waypoint and no-fly zone constraints[J]. Acta Astronautica, 2017, 138, 10- 18.
doi: 10.1016/j.actaastro.2017.05.009
|
18 |
LIANG Z X , LI Q D , REN Z . Waypoint constrained guidance for entry vehicles[J]. Aerospace Science and Technology, 2016, 52, 52- 61.
doi: 10.1016/j.ast.2016.02.023
|
19 |
LIANG Z X , LONG J T , ZHU S Y , et al. Entry guidance with terminal approach angle constraint[J]. Aerospace Science and Technology, 2020, 102, 1058- 1076.
|
20 |
LI S , JIANG X Q . RBF neural network based second-order sliding mode guidance for Mars entry uncertainties[J]. Aerospace Science and Technology, 2015, 43, 226- 235.
doi: 10.1016/j.ast.2015.03.006
|
21 |
景亮, 张忠阳, 崔乃刚, 等. 固定时间收敛扰动观测终端滑模制导律设计[J]. 系统工程与电子技术, 2019, 41 (8): 1820- 1826.
|
|
JING L , ZHANG Z Y , CUI N G , et al. Fixed-time disturbance observer based terminal sliding mode guidance law[J]. Systems Engineering and Electronics, 2019, 41 (8): 1820- 1826.
|
22 |
XU J W , QIAO J Z , GUO L , et al. Enhanced predictor-corrector mars entry guidance approach with atmospheric uncertainties[J]. IET Control Theory and Applications, 2019, 13 (11): 1612- 1618.
doi: 10.1049/iet-cta.2018.5782
|
23 |
XI Y H , PENG H , MO H . Parameter estimation of RBF-AR model based on the EM-EKF algorithm[J]. Acta Automatica Sinica, 2017, 43 (9): 1636- 1643.
|
24 |
LU P , BRUNNER C W , STACHOWIAK S J , et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 230- 248.
doi: 10.2514/1.G000327
|
25 |
江振宇, 孙乐园, 王晋璘, 等. 环境参数在线辨识及其在滑翔段制导中的应用[J]. 国防科技大学学报, 2018, 40 (2): 48- 54.
|
|
JIANG Z Y , SUN L Y , WANG J L , et al. Environmental parameter online identification and its application in gliding guidance[J]. Journal of National University of Defense Technology, 2018, 40 (2): 48- 54.
|
26 |
MOOIJ E. The Horus-2B reference vehicle, Memorandum M-692[R]. Delft: Delft University of Technology, 1995.
|
27 |
张鹏, 都延丽, 项凯. 高升阻比RLV的约束预测校正再入制导[J]. 飞行力学, 2018, 36 (3): 70- 74.
|
|
ZHANG P , DU Y L , XIANG K . Constrained predictive-corrector reentry guidance for high lift-to-drag RLV[J]. Flight Dynamics, 2018, 36 (3): 70- 74.
|
28 |
朱凯, 齐乃明, 秦昌茂. 动态航向角误差走廊的侧向制导策略[J]. 哈尔滨工业大学学报, 2011, 43 (1): 31- 35.
|
|
ZHU K , QI N M , QIN C M . A lateral guidance method with dynamic heading error corridor[J]. Journal of Harbin Institute of Technology, 2011, 43 (1): 31- 35.
|
29 |
MOOIJ E, MEASE K D, BENITO J. Robust re-entry guidance and control system design and analysis[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2007: 6779.
|
30 |
SAUNDERS B R. Optimal trajectory design under uncertainty[D]. Cambridge: Massachusetts Institute of Technology, 2012.
|