系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (5): 1248-1261.doi: 10.12305/j.issn.1001-506X.2021.05.12

• 系统工程 • 上一篇    下一篇

基于故障树的复杂装备模糊贝叶斯网络推理故障诊断

陈洪转1,*(), 赵爱佳1(), 李腾蛟1(), 蔡匆聪1(), 程硕1(), 徐春丽1,2()   

  1. 1. 南京航空航天大学经济与管理学院, 江苏 南京 211106
    2. 南京铖联激光科技有限公司, 江苏 南京 210039
  • 收稿日期:2020-07-26 出版日期:2021-05-01 发布日期:2021-04-27
  • 通讯作者: 陈洪转 E-mail:13813922476@163.com;15295556236@163.com;18561379757@163.com;51861195@qq.com;17312303672@163.com;xuchunli@3dimi.com
  • 作者简介:陈洪转(1977—), 女, 教授, 博士, 主要研究方向为复杂装备研制管理、供应链管理、质量管理。E-mail: 13813922476@163.com|赵爱佳(1992—), 男, 硕士研究生, 主要研究方向为复杂装备管理、质量管理。E-mail: 15295556236@163.com|李腾蛟(2000—), 男, 本科, 主要研究方向为工业工程。E-mail: 18561379757@163.com|蔡匆聪(2000—), 女, 本科, 主要研究方向为工业工程。E-mail: 51861195@qq.com|程硕(1996—), 男, 硕士研究生, 主要研究方向为复杂装备管理、军民融合。E-mail: 17312303672@163.com|徐春丽(1980—), 女, 硕士研究生, 主要研究方向为复杂装备管理、供应链管理。E-mail: xuchunli@3dimi.com
  • 基金资助:
    国家社会科学规划基金(19BJY094);教育部人文社会科学规划基金(18YJA630008);中央高校基本科研业务费专项资金(NP2019202);质量管理主题创新区项目资助课题

Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree

Hongzhuan CHEN1,*(), Aijia ZHAO1(), Tengjiao LI1(), Congcong CAI1(), Shuo CHENG1(), Chunli XU1,2()   

  1. 1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. Nanjing CenLaser Laser Technology Company Limited, Nanjing 210039, China
  • Received:2020-07-26 Online:2021-05-01 Published:2021-04-27
  • Contact: Hongzhuan CHEN E-mail:13813922476@163.com;15295556236@163.com;18561379757@163.com;51861195@qq.com;17312303672@163.com;xuchunli@3dimi.com

摘要:

复杂装备的小批量、个性化定制属性, 注定了其生命周期过程中存在着相对较多的不确定性, 故障隐患必不可免, 故障诊断尤为重要。因此,提出基于故障树的复杂装备模糊贝叶斯网络推理故障诊断模型。首先, 通过分析复杂装备的结构组成, 建立复杂装备的故障树模型。其次, 利用故障树转化法, 构建基于故障树的贝叶斯网络拓扑结构。然后, 针对复杂装备结构数据缺乏和专家打分的不确定性, 通过模糊集合论方法确定条件概率等参数。最后, 进行案例研究, 利用模糊贝叶斯网络推理中的因果推理和诊断推理, 诊断出案例中的故障(潜在故障)节点, 证明了所提方法的有效性。研究成果不仅解决了贝叶斯网络中利用搜索函数构建最优网络不符合实际的问题, 也通过模糊集合论解决了复杂装备数据缺乏和专家打分不确定性的不足。所提模型不仅适应于过程诊断中故障的确定, 同时也适用于事前诊断中潜在风险的识别, 而且对于故障(或潜在故障)节点的改善效果还能起到检测评估的作用。

关键词: 故障树, 复杂装备, 模糊贝叶斯网络, 故障诊断

Abstract:

The small-lot and customized attributes of complex equipment determines that there are relatively many uncertainties in the process of its life cycle, so potential fault hazard of complex equipment is inevitable, and the fault diagnosis of complex equipment is particularly important. Therefore, a fuzzy Bayesian network inference model for complex equipment fault diagnosis based on fault tree is proposed. First, the fault tree model for complex equipment is established by analyzing its structural composition. Secondly, the fault tree transformation method is used to construct the Bayesian network topology structure based on fault tree. Then, in view of lacking of structural data of complex equipment and the uncertainty of expert scoring, the fuzzy set theory is used to determine the parameters such as conditional probability. Finally, a case study is carried out, and the fault nodes (potential faults) of the cases are diagnosed by using causal inference and diagnostic inference in fuzzy Bayesian network inference, which is proved effective. The research results not only solves the problem that it is not practical to construct the optimal network by using search function in Bayesian network, but also solves the problem of data deficiencies of complex equipment and uncertainty of expert scoring by using fuzzy set theory. The proposed model is suitable not only for determining fault in process diagnosis, but also recognizing potential risk in advance diagnosis, and also play a role in the detection and evaluation of the improvement effect of faults (or potential faults) nodes.

Key words: fault tree, complex equipment, fuzzy Bayesian network, fault diagnose

中图分类号: