系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (5): 1248-1261.doi: 10.12305/j.issn.1001-506X.2021.05.12
陈洪转1,*(), 赵爱佳1(), 李腾蛟1(), 蔡匆聪1(), 程硕1(), 徐春丽1,2()
收稿日期:
2020-07-26
出版日期:
2021-05-01
发布日期:
2021-04-27
通讯作者:
陈洪转
E-mail:13813922476@163.com;15295556236@163.com;18561379757@163.com;51861195@qq.com;17312303672@163.com;xuchunli@3dimi.com
作者简介:
陈洪转(1977—), 女, 教授, 博士, 主要研究方向为复杂装备研制管理、供应链管理、质量管理。E-mail: 基金资助:
Hongzhuan CHEN1,*(), Aijia ZHAO1(), Tengjiao LI1(), Congcong CAI1(), Shuo CHENG1(), Chunli XU1,2()
Received:
2020-07-26
Online:
2021-05-01
Published:
2021-04-27
Contact:
Hongzhuan CHEN
E-mail:13813922476@163.com;15295556236@163.com;18561379757@163.com;51861195@qq.com;17312303672@163.com;xuchunli@3dimi.com
摘要:
复杂装备的小批量、个性化定制属性, 注定了其生命周期过程中存在着相对较多的不确定性, 故障隐患必不可免, 故障诊断尤为重要。因此,提出基于故障树的复杂装备模糊贝叶斯网络推理故障诊断模型。首先, 通过分析复杂装备的结构组成, 建立复杂装备的故障树模型。其次, 利用故障树转化法, 构建基于故障树的贝叶斯网络拓扑结构。然后, 针对复杂装备结构数据缺乏和专家打分的不确定性, 通过模糊集合论方法确定条件概率等参数。最后, 进行案例研究, 利用模糊贝叶斯网络推理中的因果推理和诊断推理, 诊断出案例中的故障(潜在故障)节点, 证明了所提方法的有效性。研究成果不仅解决了贝叶斯网络中利用搜索函数构建最优网络不符合实际的问题, 也通过模糊集合论解决了复杂装备数据缺乏和专家打分不确定性的不足。所提模型不仅适应于过程诊断中故障的确定, 同时也适用于事前诊断中潜在风险的识别, 而且对于故障(或潜在故障)节点的改善效果还能起到检测评估的作用。
中图分类号:
陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261.
Hongzhuan CHEN, Aijia ZHAO, Tengjiao LI, Congcong CAI, Shuo CHENG, Chunli XU. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261.
表1
故障树常用术语符号表"
类型 | 名称 | 符号 | 含义 |
事件 | 底事件 | 底事件是构成故障树最底层级的事件, 也就是无法进一步细化的系统中最基本的组成事件, 包括基本事件与非基本事件 | |
基本事件 | 基本事件是分析中能够清晰掌握其发生规律, 容易针对性改正, 且无需再查明其发生原因的事件 | ||
非基本事件 | 非基本事件是故障树分析中未探明的事件, 原则上需要进一步控明其原因, 但暂时无法获取发生原因或没有必要掌握其原因的事件, 非基本事件对系统的影响微乎其微, 定性分析或定量计算时一般可以忽略不计 | ||
结果事件 | 结果事件是故障树分析中逻辑门的输出事件, 包括顶事件和中间事件 | ||
顶事件 | 顶事件在故障树中代表系统整体故障的事件或状态, 是故障树分析中的结果, 也是系统模型中最不希望出现的状态 | ||
中间事件 | 中间事件是构成故障树模型中顶事件和底事件以外的中间层级的事件 | ||
开关事件 | 开关事件是指在正常工作条件下必然发生或必然不发生的事件 | ||
条件事件 | 条件事件是规定逻辑门是否起作用的限制事件 | ||
逻辑门 | 与门 | 与门表示所有输入事件都发生时, 输出事件才发生 | |
或门 | 或门表示只要有一个输入事件发生, 输出事件就发生 | ||
异或门 | 异或门表示只有单个输入事件发生时, 输出事件才发生 | ||
表决门 | r/n表决门表示在n个输入事件中至少有r个事件发生, 输出事件才发生 |
表3
复杂装备贝叶斯网络隶属度符号"
符号 | 含义 | 举例说明 |
Tijk | Tijk=μvk(uij)代表节点uij发生的第k个评语等级的隶属度 | T123表示复杂装备贝叶斯网络中故障层第2个节点的故障发生可能性为“一般”的隶属度 |
| r${\rm{\bar 1}}$${\rm{\bar 2}}$${\rm{\bar 3}}$表示复杂装备贝叶斯网络中故障层第2个节点的故障不发生可能性为“一般”的隶属度 | |
riji′j′k | r12345表示复杂装备贝叶斯网络中故障层第2个节点与状态层第4个件节点同时发生故障的可能性为“很低”的隶属度 | |
r12345′表示复杂装备贝叶斯网络中故障层第2个节点故障发生导致状态层第4个件节点发生故障的可能性为“很低”的隶属度 |
表5
专家评估汇总表"
事件概率 | 可能性/% | |||||||||
90~100 | 80~90 | 70~80 | 60~70 | 50~60 | 40~50 | 30~40 | 20~30 | 10~20 | 0~10 | |
P(H=1|A=1, B=0) | 11 | 1 | - | - | - | - | - | - | - | - |
P(H=1|A=0, B=1) | - | - | - | - | - | - | - | 4 | 6 | 2 |
P(I=1|C=1, D=0) | - | - | - | - | - | - | - | 6 | 5 | 1 |
P(I=1|C=0, D=1) | - | - | - | - | - | - | - | 1 | 3 | 8 |
P(J=1|E=1, F=1, G=0) | 1 | 7 | 4 | - | - | - | - | - | - | - |
P(J=1|E=1, F=0, G=1) | - | 7 | 5 | - | - | - | - | - | - | - |
P(J=1|E=1, F=0, G=0) | - | - | - | - | 1 | 6 | 3 | 2 | - | - |
P(J=1|E=0, F=1, G=1) | - | - | - | - | - | 1 | 7 | 3 | 1 | - |
P(J=1|E=0, F=1, G=0) | - | - | - | - | - | - | 1 | 5 | 6 | - |
P(J=1|E=0, F=0, G=1) | - | - | - | - | - | - | - | 5 | 7 | - |
P(K=1|H=1, I=1, J=0) | 9 | 3 | - | - | - | - | - | - | - | - |
P(K=1|H=1, I=0, J=1) | 10 | 2 | - | - | - | - | - | - | - | - |
P(K=1|H=1, I=0, J=0) | 3 | 4 | 5 | - | - | - | - | - | - | - |
P(K=1|H=0, I=1, J=1) | 2 | 5 | 5 | - | - | - | - | - | - | - |
P(K=1|H=0, I=1, J=0) | - | - | - | - | - | 1 | 10 | 1 | - | - |
P(K=1|H=0, I=0, J=1) | - | 8 | 3 | 1 | - | - | - | - | - | - |
表6
模糊贝叶斯网络条件概率表"
故障 | 征兆 | 关联强度(条件概率) |
热压罐漏压A 检具故障B | 设备故障H | P(H=1|A=1, B=1)=1 P(H=0|A=1, B=1)=0 |
P(H=1|A=1, B=0)=0.941 7 P(H=0|A=1, B=0)=0.058 3 | ||
P(H=1|A=0, B=1)=0.166 7 P(H=0|A=0, B=1)=0.833 3 | ||
P(H=1|A=0, B=0)=0 P(H=0|A=0, B=0)=1 | ||
碳纤破损C 蜂窝超尺寸D | 材料故障I | P(I=1|C=1, D=1)=1 P(I=0|C=1, D=1)=0 |
P(I=1|C=1, D=0)=0.191 7 P(I=0|C=1, D=0)=0.808 3 | ||
P(I=1|C=0, D=1)=0.091 7 P(I=0|C=0, D=1)=0.908 3 | ||
P(I=1|C=0, D=0)=0 P(I=1|C=0, D=0)=1 | ||
铺贴故障E 机加量偏差F 装配出错G | 操作故障J | P(J=1|E=1, F=1, G=1)=1 P(J=0|E=1, F=1, G=1)=0 |
P(J=1|E=1, F=1, G=0)=0.82 5 P(J=0|E=1, F=1, G=0)=0.17 5 | ||
P(J=1|E=1, F=0, G=1)=0.808 3 P(J=0|E=1, F=0, G=1)=0.191 7 | ||
P(J=1|E=1, F=0, G=0)=0.4 P(J=0|E=1, F=0, G=0)=0.6 | ||
P(J=1|E=0, F=1, G=1)=0.316 7 P(J=0|E=0, F=1, G=1)=0.683 3 | ||
P(J=1|E=0, F=1, G=0)=0.208 3 P(J=0|E=0, F=1, G=0)=0.791 7 | ||
P(J=1|E=0, F=0, G=1)=0.191 7 P(J=0|E=0, F=0, G=1)=0.808 3 | ||
P(J=1|E=0, F=0, G=0)=0 P(J=0|E=0, F=0, G=0)=1 | ||
设备故障H 材料故障I 操作故障J | 复合材料报废K | P(K=1|H=1, I=1, J=1)=1 P(K=0|H=1, I=1, J=1)=0 |
P(K=1|H=1, I=1, J=0)=0.92 5 P(K=0|H=1, I=1, J=0)=0.07 5 | ||
P(K=1|H=1, I=0, J=1)=0.933 3 P(K=0|H=1, I=0, J=1)=0.066 7 | ||
P(K=1|H=1, I=0, J=0)=0.833 3 P(K=0|H=1, I=0, J=0)=0.166 7 | ||
P(K=1|H=0, I=1, J=1)=0.825 P(K=0|H=0, I=1, J=1)=0.175 | ||
P(K=1|H=0, I=1, J=0)=0.35 P(K=0|H=0, I=1, J=0)=0.65 | ||
P(K=1|H=0, I=0, J=1)=0.808 3 P(K=0|H=0, I=0, J=1)=0.191 7 | ||
P(K=1|H=0, I=0, J=0)=0 P(K=0|H=0, I=0, J=0)=1 |
表7
传统贝叶斯网络条件概率表"
条件概率 | 专家编号 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 均值 | |
P(H=1|A=1, B=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P(H=1|A=1, B=0)=1 | 0.9 | 0.8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.975 0 |
P(H=1|A=0, B=1)=0.2 | 0 | 0 | 0.3 | 0.3 | 0.25 | 0.25 | 0.1 | 0.2 | 0.1 | 0.15 | 0.1 | 0.1 | 0.154 2 |
P(H=1|A=0, B=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P(I=1|C=1, D=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P(I=1|C=1, D=0)=0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.25 | 0.1 | 0 | 0.25 | 0.183 3 |
P(I=1|C=0, D=1)=0.1 | 0 | 0.3 | 0 | 0.1 | 0 | 0.1 | 0 | 0.2 | 0 | 0 | 0.05 | 0.05 | 0.066 7 |
P(I=1|C=0, D=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P(J=1|E=1, F=1, G=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P(J=1|E=1, F=1, G=0)=0.8 | 0.8 | 0.7 | 0.75 | 0.9 | 0.9 | 0.9 | 0.85 | 0.9 | 0.9 | 0.9 | 0.7 | 0.8 | 0.833 3 |
P(J=1|E=1, F=0, G=1)=0.8 | 0.9 | 0.85 | 0.85 | 0.8 | 0.8 | 0.8 | 0.7 | 0.8 | 0.8 | 0.9 | 0.7 | 0.8 | 0.809 1 |
P(J=1|E=1, F=0, G=0)=0.4 | 0.3 | 0.4 | 0.35 | 0.35 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.3 | 0.6 | 0.409 1 |
P(J=1|E=0, F=1, G=1)=0.3 | 0.3 | 0.5 | 0.2 | 0.35 | 0.2 | 0.4 | 0.3 | 0.3 | 0.4 | 0.1 | 0.3 | 0.2 | 0.295 8 |
P(J=1|E=0, F=1, G=0)=0.2 | 0.3 | 0.1 | 0.3 | 0.4 | 0.1 | 0.2 | 0.2 | 0.15 | 0.1 | 0.2 | 0.1 | 0.3 | 0.204 2 |
P(J=1|E=0, F=0, G=1)=0.2 | 0.3 | 0.15 | 0.2 | 0.15 | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.181 8 |
P(J=1|E=0, F=0, G=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P(K=1|H=1, I=1, J=1)=1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
P(K=1|H=1, I=1, J=0)=0.9 | 1 | 0.85 | 0.95 | 1 | 1 | 1 | 0.95 | 0.8 | 1 | 0.9 | 0.8 | 1 | 0.937 5 |
P(K=1|H=1, I=0, J=1)=0.9 | 1 | 0.85 | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.9 | 1 | 1 | 1 | 1 | 0.945 8 |
P(K=1|H=1, I=0, J=0)=0.8 | 0.9 | 0.85 | 1 | 0.7 | 0.8 | 1 | 0.8 | 0.9 | 1 | 0.7 | 0.7 | 0.7 | 0.837 5 |
P(K=1|H=0, I=1, J=1)=0.9 | 0.8 | 0.85 | 0.85 | 0.9 | 0.7 | 1 | 0.8 | 0.8 | 0.9 | 0.7 | 1 | 0.7 | 0.833 3 |
P(K=1|H=0, I=1, J=0)=0.3 | 0.3 | 0.45 | 0.3 | 0.4 | 3 | 0.2 | 0.4 | 0.3 | 0.35 | 0.3 | 0.3 | 0.35 | 0.554 2 |
P(K=1|H=0, I=0, J=1)=0.8 | 0.9 | 0.75 | 0.9 | 0.8 | 0.7 | 0.9 | 0.8 | 0.7 | 0.6 | 0.9 | 0.9 | 0.9 | 0.812 5 |
P(K=1|H=0, I=0, J=0)=0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 |
HOBDAY M , RUSH H . Technology management in complex product systems (CoPS)[J]. International Journal of Technology Management, 1999, 17 (6): 618- 638.
doi: 10.1504/IJTM.1999.002739 |
2 | 闫伟, 何桢, 李岸达. 基于CEM-IG算法的复杂装备关键质量特性识别[J]. 系统工程理论与实践, 2014, 34 (5): 1230- 1236. |
YAN W , HE Z , LI A D . Identification of critical-to-quality characteristics for complex products using CEM-IG algorithm[J]. System Engineering-Theory & Practice, 2014, 34 (5): 1230- 1236. | |
3 |
SHATNAWI Y , AL-KHASSAWENEH M . Fault diagnosis in internal combustion engines using extension neural network[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (3): 1434- 1443.
doi: 10.1109/TIE.2013.2261033 |
4 | LI W J , GU S , ZHANG X P , et al. Transfer learning for process fault diagnosis: knowledge transfer from simulation to physical processes[J]. Computers & Chemical Engineering, 2020, 139, 106904. |
5 |
SUN H C , HUANG C M , HUANG Y C . Fault diagnosis of steam turbine-generator sets using an EPSO-based support vector classifier[J]. IEEE Trans.on Energy Conversion, 2013, 28 (1): 164- 171.
doi: 10.1109/TEC.2012.2227747 |
6 |
CASTEJON C , LARA O , GARCIA-PRADA J C . Automated diagnosis of rolling bearings using MRA and neural networks[J]. Mechanical Systems and Signal Processing, 2010, 24 (1): 289- 99.
doi: 10.1016/j.ymssp.2009.06.004 |
7 | SUN J D , YAN C H , WEN J T . Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning[J]. IEEE Trans.on Instrumentation and Measurement, 2017, 67 (9): 185- 195. |
8 |
ZHANG Z Z , LI S M , WANG J R , et al. General normalized sparse filtering: a novel unsupervised learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 124, 596- 612.
doi: 10.1016/j.ymssp.2019.02.006 |
9 |
WU C Z , JIANG P C , DING C , et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108, 53- 61.
doi: 10.1016/j.compind.2018.12.001 |
10 |
TIANFIEL D , HUAGLOR Y . Advanced life cycle model for complex product development via stage-aligned information substitutive concurrency and detour[J]. International Journal of Computer Integrated Manufacturing, 2001, 14 (3): 281- 303.
doi: 10.1080/09511920010000165 |
11 | SHEN B , CHEN C X . Quality management in outsourced global fashion supply chains: an exploratory case study[J]. Production Planning & Control, 2020, 31 (9): 757- 769. |
12 |
LI G , ALCALA C F , QIN S J . Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process[J]. IEEE Trans.on Control Systems Technology, 2011, 19 (5): 1114- 1127.
doi: 10.1109/TCST.2010.2071415 |
13 | XIE Z Q , HAO S Z , YE G J , et al. A new algorithm for complex product flexible scheduling with constraint between jobs[J]. Computer & Industrial Engineering, 2009, 57 (3): 766- 772. |
14 |
GENG Z Q , WANG Z , HU H X , et al. A fault detection method based on horizontal visibility graph-integrated complex networks: application to complex chemical processes[J]. The Canadian Journal of Chemical Engineering, 2019, 97 (5): 1129- 1138.
doi: 10.1002/cjce.23319 |
15 | MARIANI L , PASTORE F , PEZZE M . Dynamic analysis for diagnosing integration faults[J]. IEEE Trans.on Software Engineering, 2001, 37 (4): 486- 508. |
16 | PENG K , ZHANG K , YOU B , et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (4): 2615- 2624. |
17 |
LIU J . A dynamic modelling method of a rotor-roller bearing-housing system with a localized fault including the additional excitation zone[J]. Journal of Sound and Vibration, 2020, 469, 115144.
doi: 10.1016/j.jsv.2019.115144 |
18 |
HAO Y S , SONG L Y , REN B Y , et al. Step-by-step compound faults diagnosis method for equipment based on majorization-minimization and constraint SCA[J]. IEEE/ASME Trans.on Mechatronics, 2019, 24 (6): 2477- 2487.
doi: 10.1109/TMECH.2019.2951589 |
19 |
CHENG J S , YANG Y , YANG Y . A rotating machinery fault diagnosis method based on local mean decomposition[J]. Digital Signal Processing, 2012, 22 (2): 356- 366.
doi: 10.1016/j.dsp.2011.09.008 |
20 |
TIAN J , MORILLO C , AZARIAN M H . Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (3): 1793- 1803.
doi: 10.1109/TIE.2015.2509913 |
21 |
XU L J , HUANG J G , WANG H J , et al. A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM[J]. Circuits Systems and Signal Processing, 2010, 29 (4): 577- 600.
doi: 10.1007/s00034-010-9160-1 |
22 |
JIANG Q , YAN X . Parallel PCA-KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018, 80, 17- 25.
doi: 10.1016/j.conengprac.2018.07.012 |
23 |
SIHOMBING F , TORBOL M . Parallel fault tree analysis for accurate reliability of complex systems[J]. Structural Safety, 2018, 72, 41- 53.
doi: 10.1016/j.strusafe.2017.12.003 |
24 | SI S B, LIU F H, CAI Z Q. Failure importance analysis models based on bayesian network[C]//Proc. of the IEEE 16th International Conference on Industrial Engineering and Engineering Management, 2009: 151-154. |
25 | 孙贇, 王瑛, 李超. 基于UR-MTPGERT网络模型的复杂装备风险传导分析[J]. 北京航空航天大学学报, 2018, 44 (8): 1587- 1595. |
SUN B , WANG Y , LI C . Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (8): 1587- 1595. | |
26 |
SAHIN F , YAVUZ M , ARNAVUT Z , et al. Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization[J]. Parallel Computing, 2007, 33 (2): 124- 143.
doi: 10.1016/j.parco.2006.11.005 |
27 | SI W T, CAI Z Q, SUN S D, et al. Integration of failure prediction Bayesian networks for complex equipment system[C]//Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2014: 1161-1165. |
28 | 蔡志强, 孙树栋, 司书宾, 等. 基于FMECA的复杂装备故障预测贝叶斯网络建模[J]. 系统工程理论与实践, 2013, 33 (1): 187- 193. |
CAI Z Q , SUN S D , SI S N , et al. Modeling of failure prediction bayesian network based on FMECA[J]. System Engineering-Theory & Practice, 2013, 33 (1): 187- 193. | |
29 | 王永攀, 杨江平, 邓翔, 等. 基于贝叶斯网络的复杂装备维修质量评价模型[J]. 系统工程与电子技术, 2017, 39 (3): 569- 576. |
WANG Y P , YANG J P , DENG X , et al. Assessment model of complex equipment maintenance quality based on bayesian network[J]. Systems Engineering and Electronics, 2017, 39 (3): 569- 576. | |
30 | 张家良, 曹建福, 高峰. 结合非线性频谱与贝叶斯网络的复杂装备传动系统故障诊断[J]. 电机与控制学报, 2014, 18 (3): 107- 112. |
ZHANG J L , CAO J F , GAO F . Fault diagnosis of driving system for complex equipment based on nonlinear spectrum and Bayesian network[J]. Electric Machines and Control, 2014, 18 (3): 107- 112. | |
31 |
JUN H B , KIM D . A Bayesian network-based approach for fault analysis[J]. Expert Systems with Applications, 2017, 81, 332- 348.
doi: 10.1016/j.eswa.2017.03.056 |
32 |
BOBBIO A , PORTINALE L , MINICHINO M , et al. Improving the analysis of dependable systems by mapping fault trees into bayesian networks[J]. Reliability Engineering and System Safety, 2001, 71 (3): 249- 260.
doi: 10.1016/S0951-8320(00)00077-6 |
[1] | 董恩志, 程中华, 王荣财. 考虑经济相关性的复杂二维保修装备组合维修策略[J]. 系统工程与电子技术, 2022, 44(7): 2219-2228. |
[2] | 高升, 马广富, 郭延宁. 基于自适应未知输入观测器的多故障快速重构[J]. 系统工程与电子技术, 2022, 44(7): 2364-2373. |
[3] | 陈琨, 黄宁, 吴祥蔚, 赵静萌. 考虑抑制耦合关系的5G业务故障分析方法[J]. 系统工程与电子技术, 2022, 44(6): 2043-2050. |
[4] | 侯召国, 王华伟, 周良, 付强. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44(6): 2051-2059. |
[5] | 刘星, 王文双, 赵建印, 朱敏. 自适应在线增量ELM的故障诊断模型研究[J]. 系统工程与电子技术, 2021, 43(9): 2678-2687. |
[6] | 杨刚, 吴旭升, 孙盼, 朱浩, 熊胜. 基于性能的复杂装备现场可更换单元规划[J]. 系统工程与电子技术, 2021, 43(8): 2174-2180. |
[7] | 李睿峰, 许爱强, 孙伟超, 王树友. 基于元学习的航空电子设备特征选择算法推荐方法[J]. 系统工程与电子技术, 2021, 43(7): 2011-2020. |
[8] | 王力, 刘子奇. WPA-IGA-BP神经网络的模拟电路故障诊断[J]. 系统工程与电子技术, 2021, 43(4): 1133-1143. |
[9] | 戴金玲, 许爱强. 基于动态软聚类的航空电子部件LMKELM诊断模型[J]. 系统工程与电子技术, 2021, 43(3): 637-646. |
[10] | 孟晨, 杨华晖, 王成, 马征. 数据驱动的武器系统电子元部件级故障诊断研究综述[J]. 系统工程与电子技术, 2021, 43(2): 574-583. |
[11] | 马云飞, 贾希胜, 白华军, 郭驰名, 王双川. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42(9): 1911-1919. |
[12] | 杨占刚, 郝雯超, 隋政, 刘建英. 基于最小割序集的独立电力系统可靠性分析[J]. 系统工程与电子技术, 2020, 42(8): 1865-1872. |
[13] | 乔森, 黄志球, 王金永, 宛伟健. 基于统计模型检测的DFT定量分析方法[J]. 系统工程与电子技术, 2020, 42(2): 480-488. |
[14] | 李波, 张琳, 汪文峰, 王冠男. 基于Park-HHT的故障特征提取方法[J]. 系统工程与电子技术, 2020, 42(12): 2944-2952. |
[15] | 刘久富, 张治国, 郑锐, 刘海阳, 杨忠, 王志胜. 双组元推进系统的部分可观时间Petri网故障诊断[J]. 系统工程与电子技术, 2018, 40(6): 1337-1344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||