1 |
CHIEN W , LAI C , HOSSAIN M S , et al. Heterogeneous space and terrestrial integrated networks for IoT: architecture and challenges[J]. IEEE Network, 2019, 33 (1): 15- 21.
doi: 10.1109/MNET.2018.1800182
|
2 |
LEE H C , GONG C S A , CHEN P Y . A compressed sensing estimation technique for doubly selective channel in OFDM systems[J]. IEEE Access, 2019, 7, 115192- 115199.
doi: 10.1109/ACCESS.2019.2935758
|
3 |
李珅, 马彩文, 李艳, 等. 压缩感知重构算法综述[J]. 红外与激光工程, 2013, 42 (S1): 225- 232.
|
|
LI S , MA C W , LI Y , et al. Review of compressed sensing reconstruction algorithms[J]. Infrared and Laser Engineering, 2013, 42 (S1): 225- 232.
|
4 |
TANG L, WU H, JIANG R. An improved pilot routing algorithm for compressed sensing-based channel estimation in underwater acoustic OFDM system[C]//Proc.of the International Conference on Advanced Infocomm Technology, 2017: 90-94.
|
5 |
AKBARPOUR-KASGARI A, ARDEBILIPOUR M. MIMO-OFDM compressed channel estimation using forward-backward pursuit[C]//Proc.of the 26th Iranian Conference on Electrical Engineering, 2018: 670-673.
|
6 |
GU Y, ZHANG Y D, GOODMAN N A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO[C]//Proc.of the IEEE International Conference on Acoustics Speech and Signal Processing, 2017: 3181-3185.
|
7 |
WU Y F, NI J G. Robust nonnegative mixed-norm algorithm with weighted l1-norm regularization[C]//Proc of the IEEE International Conference on Signal Processing, Communications and Computing, 2019.
|
8 |
CANDES E J , TAO T . Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Trans.on Information Theory, 2006, 52 (12): 5406- 5425.
doi: 10.1109/TIT.2006.885507
|
9 |
CANDES E J . The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus-Mathématique, 2008, 346 (9-10): 589- 592.
doi: 10.1016/j.crma.2008.03.014
|
10 |
王侠, 王开, 王青云, 等. 压缩感知中的确定性随机观测矩阵构造[J]. 信号处理, 2014, 30 (4): 436- 442.
|
|
WANG X , WANG K , WANG Q Y , et al. Construction of deterministic random observation matrix in compressed sensing[J]. Signal Processing, 2014, 30 (4): 436- 442.
|
11 |
SINGH A, KYLLONEN J, CADUC S, et al. Compact smart antenna system for improving probability of detection[C]//Proc.of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 1383-1384.
|
12 |
WANG M. High resolution radar imaging based on compressed sensing and adaptive lp norm algorithm[C]//Proc.of the IEEE Chinese Institute of Electronics International Conference on Radar, 2011: 206-209.
|
13 |
WAKITANI S, YAMAMOTO T. Study on a GMDH-PID controller design method based on LASSO[C]//Proc.of the 57th Annual Conference of the Society of Instrument and Control Engineers of Japan, 2018: 1464-1469.
|
14 |
MOHANTY R, HAPPY S L, SUTHAR N, et al. A trace Lasso regularized l1-norm graph cut for highly correlated noisy hyperspectral image[C]//Proc.of the 26th European Signal Processing Conference, 2018: 2220-2224.
|
15 |
GOLILARZ N A, GAO H, ALI W, et al. Hyper-spectral remote sensing image de-noising with three dimensional wavelet transform utilizing smooth nonlinear soft thresholding function[C]//Proc.of the 15th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2018: 142-146.
|
16 |
SESADRI U, NAGARAJU C. Optimal thresholding for enhancement of low contrasted images using soft computing[C]//Proc.of the Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth, 2015: 273-277.
|
17 |
SAFAEI A, TANG H L, SANEI S. Incorporating negentropy in saliency-based search free car number plate localization[C]//Proc.of the IEEE International Conference on Digital Signal Processing, 2016: 667-671.
|
18 |
BECK A, TEBOULLE M. A fast Iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2009: 693-696.
|