1 |
GHAZAL A , YUAN Y , WANG C X , et al. A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Trans.on Wireless Communications, 2017, 16 (4): 2057- 2068.
doi: 10.1109/TWC.2016.2628795
|
2 |
LI Y S, BANG Y J, LI J H, et al. LS channel estimation performance analysis for RoF channel environment in the OFDM system[C]//Proc.of the IEEE 12th International Conference on Optical Internet, 2014.
|
3 |
ŠIMKO M, MEH C, WRULICH M, et al. Doubly dispersive channel estimation with scalable complexity[C]//Proc.of the International ITG Workshop on Smart Antennas, 2010: 251-256.
|
4 |
RABBI M F , HOU S W , KONG C . High mobility orthogonal frequency division multiple access channel estimation using basis expansion model[J]. IET Communications, 2010, 4 (3): 353- 367.
doi: 10.1049/iet-com.2009.0343
|
5 |
WANG G P , GAO F F , CHEN W , et al. Channel estimation and training design for two-way relay networks in time-selective fading environments[J]. IEEE Trans.on Wireless Communications, 2011, 10 (8): 2681- 2691.
doi: 10.1109/TWC.2011.060711.101407
|
6 |
卢娜, 高丽, 沈轩帆. 基于无迹卡尔曼滤波的双选信道估计方法[J]. 山东大学学报(工学版), 2019, 49 (4): 130- 136.
|
|
LU N , GAO L , SHEN Y F . Double-selection channel estimation method based on unscented Kalman filter[J]. Journal of Shandong University (Engineering Edition), 2019, 49 (4): 130- 136.
|
7 |
O'SHEA T J , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2017, 3 (4): 563- 575.
doi: 10.1109/TCCN.2017.2758370
|
8 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
9 |
YE H , LI G Y , JUANG B . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7 (1): 114- 117.
doi: 10.1109/LWC.2017.2757490
|
10 |
NACHMANI E , MARCIANO E , LUGO-SCH L , et al. Deep learning methods for improved decoding of linear codes[J]. IEEE Journal of Selected Topic Signal Processing, 2018, 12 (1): 119- 131.
doi: 10.1109/JSTSP.2017.2788405
|
11 |
WANG X Y , GAO L , MAO S , et al. CSI-based fingerprinting for indoor localization: a deep learning approach[J]. IEEE Trans.on Vehicular Technology, 2017, 6 (1): 763- 776.
|
12 |
BAI Q B , WANG J T , ZHANG Y , et al. Deep learning-based channel estimation algorithm over time selective fading channels[J]. IEEE Trans.on Cognitive Communications and Networking, 2020, 6 (1): 125- 134.
doi: 10.1109/TCCN.2019.2943455
|
13 |
JIANG P W, WANG T Q, HAN B, et al. Artificial intelligence-aided OFDM receiver: design and experimental results[EB/OL]. [2019-11-02]. https: //arXiv.org/abs/1812.06638.
|
14 |
GAO X , WEN C K , JIN S , et al. ComNet: combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22 (12): 2627- 2630.
doi: 10.1109/LCOMM.2018.2877965
|
15 |
YANG Y , GAO F F , MA X L , et al. Deep learning-based channel estimation for doubly selective fading channels[J]. IEEE Access, 2019, 7, 36579- 36589.
doi: 10.1109/ACCESS.2019.2901066
|
16 |
LIAO Y, HUA X Y, DU X M. ChanEstNet: a deep learning based channel estimation for high-speed scenarios[C]//Proc.of the IEEE International Conference on Communications, 2019.
|
17 |
LIAO Y , HUA X Y , CAI Y L . Deep learning based channel estimation algorithm for fast time-varying MIMO-OFDM systems[J]. IEEE Communications Letters, 2020, 24 (3): 572- 576.
doi: 10.1109/LCOMM.2019.2960242
|
18 |
YANG J , WEN C K , JIN S , et al. Beamspace channel estimation in mmWave systems cosparse image reconstruction technique[J]. IEEE Trans.on Communications, 2018, 66 (10): 4767- 4782.
|
19 |
SOLTANI M , POURAHMADI V , SHEIKH-ZADEH H , et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019, 23 (4): 652- 655.
doi: 10.1109/LCOMM.2019.2898944
|
20 |
DONG C, LOY C, TANG X, Accelerating the super-resolution convolutional neural network[C]//Proc.of the IEEE European Conference on Computer Vision, 2016: 391-407.
|
21 |
ZHANG K , ZUO W M , CHEN Y J , et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans.on Image Processing, 2017, 26 (7): 3142- 3155.
doi: 10.1109/TIP.2017.2662206
|
22 |
刘留, 陶成, 陈后金, 等. 高速铁路无线传播信道测量与建模综述[J]. 通信学报, 2014, 35 (1): 115- 127.
doi: 10.3969/j.issn.1000-436x.2014.01.014
|
|
LIU L , TAO C , CHEN H J , et al. Survey of measurement and modeling of high-speed railway wireless propagation channels[J]. Journal of Communications, 2014, 35 (1): 115- 127.
doi: 10.3969/j.issn.1000-436x.2014.01.014
|
23 |
刘璨, 崔昊杨, 王超群, 等. 高速移动环境下无线信道模型的性能[J]. 上海电力学院学报, 2016, 32 (1): 73- 77.
doi: 10.3969/j.issn.1006-4729.2016.01.016
|
|
LIU C , CUI H Y , WANG C Q , et al. Performance of wireless channel model in high-speed mobile environment[J]. Journal of Shanghai Electric Power University, 2016, 32 (1): 73- 77.
doi: 10.3969/j.issn.1006-4729.2016.01.016
|