1 |
KHARBECH S , DAYOUB I , SIMON E , et al. On classifiers for blind feature-based automatic modulation classification over MIMO Channels[J]. IET Communications, 2016, 10 (7): 790- 795.
doi: 10.1049/iet-com.2015.1124
|
2 |
ZHE X , YONG G . Method to reduce the signal-to-noise ratio required for modulation recognition based on logarithmic properties[J]. IET Communications, 2018, 12 (11): 1360- 1366.
doi: 10.1049/iet-com.2018.0030
|
3 |
GHASEMI S, GANGAL A. An effective algorithm for automatic modulation recognition[C]//Proc. of the IEEE 22nd Conference on Signal Processing and Communications Applications, 2014: 903-906.
|
4 |
SHERME A E . A novel method for auto-matic modulation recognition[J]. Applied Soft Computing, 2012, 12 (1): 453- 461.
doi: 10.1016/j.asoc.2011.08.025
|
5 |
WANG H, GUO L L. A new method of automatic modulation recognition based on dimension reduction[C]//Proc. of the IEEE Forum on Cooperative Positioning and Service, 2017: 316-320.
|
6 |
ZHANG Z , LI Y B , JIN S S , et al. Modulation signal recognition based on information entropy and ensemble learning[J]. Entropy, 2018, 20 (3): 198- 198.
doi: 10.3390/e20030198
|
7 |
WANG H , GUO L L , DOU Z , et al. A new method of cognitive signal recognition based on hybrid information entropy and D-S evidence theory[J]. Mobile Networks and Applications, 2018, 23 (4): 677- 685.
doi: 10.1007/s11036-018-1000-8
|
8 |
O'SHEA T J, CORGAN J, CLANCY T C, et al. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
|
9 |
O'SHEA T J , ROY T , CLANCY T C , et al. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022
|
10 |
JEONG S, LEE U, KIM S C. Spectrogram-based automatic modu-lation recognition using convolution neural network[C]//Proc. of the IEEE 10th International Conference on Ubiquitous and Future Networks, 2018: 843-845.
|
11 |
FAN M , PENG C , LENAN W , et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772.
doi: 10.1109/TVT.2018.2868698
|
12 |
ZHANG Z , WANG C , GAN C , et al. Automatic modulation classification using convolutional neural network with features fusion of SPVWD and BJD[J]. IEEE Trans.on Signal and Information Processing over Networks, 2019, 16 (4): 1- 15.
|
13 |
李跃, 郭兴吉, 赵欣. 基于高阶累积量的调制方式识别研究[J]. 西南科技大学学报, 2018, 33 (3): 64- 68.
doi: 10.3969/j.issn.1671-8755.2018.03.013
|
|
LI Y , GUO X J , ZHAO X . Study on modulation recognition based on higher-order cumulants[J]. Journal of Southwest University of Science and Technology, 2018, 33 (3): 64- 68.
doi: 10.3969/j.issn.1671-8755.2018.03.013
|
14 |
谭晓衡, 褚国星, 张雪静, 等. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40 (1): 171- 177.
|
|
TAN X H , ZHU G X , ZHANG X J , et al. Modulation recognition algorithm based on highorder-cumulants and wavelet transform[J]. Systems Engineering and Electronics, 2018, 40 (1): 171- 177.
|
15 |
李晨, 杨俊安, 刘辉. 基于信息熵和GA-ELM的调制识别算法[J]. 系统工程与电子技术, 2020, 42 (1): 223- 229.
|
|
LI C , YANG J A , LIU H . Modulation recognition algorithm based on information entropy and GA-ELM[J]. Systems Engineering and Electronics, 2020, 42 (1): 223- 229.
|
16 |
ALI A , FAN Y Y . Automatic modulation classification using deep learning based on sparse autoencoders with non-negativity constraints[J]. IEEE Signal Processing Letter, 2017, 24 (11): 1626- 1630.
doi: 10.1109/LSP.2017.2752459
|
17 |
YA T, LIN Y, WANG H. Modulation recognition of digital signal based on deep auto-ancoder network[C]//Proc. of the IEEE International Conference on Software Quality, Reliability and Security Companion, 2017: 256-260.
|
18 |
O'SHEA T J, CORGAN J, CLANCY T C. Unsupervised representation learning of structured radio communication signals[C]//Proc. of the Learning for Intelligent Machines, 2016.
|
19 |
ASLAM M W , ZHU Z , NANDI A K . Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Trans.on Wireless Communication, 2012, 11 (8): 2742- 2750.
|
20 |
ANG J C, HARON H, NUZLY H, et al. Semi-supervised SVM-based feature selection for cancer classification using microarray gene expression data[C]//Proc. of the International Conference on Industrial, 2015: 468-477.
|
21 |
HAN Y H , YANG Y , YAN Y , et al. Semi-supervised feature selection via spline regression for video semantic recognition[J]. IEEE Trans.on Neural Networks Learning System, 2015, 26 (6): 252- 264.
|
22 |
BENABDESLEM K , HINDAWI M . Efficient semi-supervised feature selection: constraint, relevance, and redundancy[J]. IEEE Trans. on Knowledge and Data Engineering, 2014, 26 (5): 1131- 1143.
doi: 10.1109/TKDE.2013.86
|
23 |
SHEIKHPOUR R , SARRAM M A , GHARAGHANI S , et al. A survey on semi-supervised feature selection methods[J]. Pattern Recognition, 2016, 31 (3): 35- 45.
|
24 |
YU L , LIU H . Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5 (12): 1205- 1224.
|
25 |
WANG Y T , WANG J D , LIAO H . An efficient semi-supervised representatives feature selection algorithm based on information theory[J]. Pattern Recognition, 2017, 61 (5): 11- 52.
|
26 |
PENG H , LONG F , DING C . Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2005, 27 (4): 1226- 1238.
|
27 |
ZHANG S C , LI X L . Learning K for KNN classification[J]. ACM Trans.on Intelligent System and Technology, 2017, 8 (8): 1- 19.
|