系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (4): 1099-1109.doi: 10.12305/j.issn.1001-506X.2021.04.28

• 通信与网络 • 上一篇    下一篇

基于集成学习与特征降维的小样本调制识别方法

史蕴豪*(), 许华(), 郑万泽(), 刘英辉()   

  1. 空军工程大学信息与导航学院, 陕西 西安 710077
  • 收稿日期:2020-06-08 出版日期:2021-03-25 发布日期:2021-03-31
  • 通讯作者: 史蕴豪 E-mail:shiyunhaoai@163.com;13720720010@139.com;107011650@qq.com;YingHui_Liu@163.com
  • 作者简介:史蕴豪(1996-), 男, 硕士研究生, 主要研究方向为智能通信对抗与通信信号识处理。E-mail: shiyunhaoai@163.com|许华(1976-), 男, 教授, 博士研究生导师, 博士, 主要研究方向为通信信号处理、盲信号处理与通信对抗。E-mail: 13720720010@139.com|郑万泽(1986-), 男, 讲师, 硕士, 主要研究方向为通信工程与训练评估。E-mail: 107011650@qq.com|刘英辉(1996-), 男, 硕士研究生, 主要研究方向为通信信号处理与机器学习。E-mail: YingHui_Liu@163.com
  • 基金资助:
    国家自然科学基金(61601500)

Few-shot modulation recognition method based on ensemble learning and feature dimension reduction

Yunhao SHI*(), Hua XU(), Wanze ZHENG(), Yinghui LIU()   

  1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
  • Received:2020-06-08 Online:2021-03-25 Published:2021-03-31
  • Contact: Yunhao SHI E-mail:shiyunhaoai@163.com;13720720010@139.com;107011650@qq.com;YingHui_Liu@163.com

摘要:

针对有标签样本较少条件下的通信信号调制识别问题, 提出一种基于集成学习与特征降维的小样本调制方式分类模型。首先,通过集成人工特征与深度学习自动提取特征构成特征集合。然后,设计特征选择算法对特征合集进行优选生成高效特征子集。最后, 利用可快速收敛的高性能分类器对信号进行区分, 实现在少量有标签样本和大量无标签样本条件下的调制方式分类。仿真结果表明, 通过对8种数字信号进行调制识别, 在信噪比为20 dB时, 所提算法可将信号最高识别率提升至96%, 同时该算法设计简单, 具有较大应用价值。

关键词: 调制识别, 小样本, 集成学习, 特征选择

Abstract:

Aiming at the problem of communication signal modulation recognition with few labeled samples, a few-shot modulation classification model based on ensemble learning and feature dimension reduction is proposed. Firstly, the feature set is formed by integrating handcrafted features and deep learning features. And then, the feature selection algorithm is designed to optimize the feature set to generate an optimal feature subset. Finally, the signals are distinguished by a fast convergent high-performance classifier, which can realize the modulation classification under the condition of a small number of labeled samples and a large number of unlabeled samples. The simulation results show that when the signal to noise ratio is 20 dB, the proposed algorithm can improve the signal recognition rate to 96% through modulation recognition of eight kinds of digital signals. At the same time, the algorithm is simple and has great application value.

Key words: modulation recognition, few-shot, ensemble learning, feature selection

中图分类号: